Communication
ChemComm
at 1454.7 cmÀ1 for GNM. This is a similar peak observed by
Ren et al. for graphene nanoribbons (GNRs) which are stripes of
graphene with a width typically smaller than 100 nm.13 This
particular Raman signal arises from the localized vibration of
the edge atoms of zigzag GNRs terminated with H atoms.
Another interesting fact is that GNRs with zigzag-shaped edge
are typically metallic with peculiar edge states on both sides of
the ribbon regardless of their width. Jung et al. also noted that
GNM can be thought of as many highly interconnected GNRs11
and the similarities observed herein suggest that our fabricated
GNMs may well behave just like GNR. However, further studies
are necessary to evaluate this observed phenomenon. The
fabrication and characterization of GNM with narrower neck
widths using smaller PS spheres are currently underway.
In summary, we have demonstrated a simple and cost-
effective electro-patterning method in tandem with colloidal
templating to afford the fabrication of GNM. The processes
described herein are mainly solution processes that do not
require intricate instrumentation. The technique presented is a
promising route to fabricate GNMs as evidenced by SEM
images, AFM topography, surface roughness and Raman
spectroscopy. We envision that this patterning technique will
facilitate the fabrication of graphene-based electronic devices
and will be useful in other applications such as chemical
sensors and supercapacitors.
D. Rodrigues and R. C. Advincula, Chem. Commun., 2015, 51, 2886;
I. M. Carpio, J. D. Mangadlao, H. N. Nguyen, R. C. Advincula and
D. F. Rodrigues, Carbon, 2014, 77, 289; C. M. Santos, J. D.
Mangadlao, F. Ahmed, A. Leon, R. C. Advincula and D. F.
Rodrigues, Nanotechnology, 2012, 23, 395101.
2 S. Gilje, S. Han, M. Wang, K. L. Wang and R. B. Kaner, Nano Lett.,
2007, 20, 3394; J. Bai, X. Zhong, S. Jiang, Y. Huang and X. Duan, Nat.
Nanotechnol., 2010, 5, 190; M. Kim, N. Safron, E. Han, M. Arnold and
P. Gopalan, Nano Lett., 2010, 10, 1125; Z. F. Liu, Q. Liu, Y. Huang,
F. Ma, S. G. Yin, X. Y. Zhang, W. Sun and Y. S. Chen, Adv. Mater.,
2008, 20, 3924; T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang and C. Lieber,
Nano Lett., 2010, 10, 1098.
3 G. Ning, Z. Fan, G. Wang, J. Gao, W. Qianc and F. Wei, Chem.
Commun., 2011, 47, 5976; J. Liu, H. Cai, X. Yu, K. Zhang, X. Li, J. Li,
N. Pan, Q. Shi, Y. Lou and X. Wang, J. Phys. Chem. C, 2012,
116, 15741; G. Ning, C. Xu, L. Hao, O. Kazakova, Z. Fan, H. Wang,
K. Wang, J. Gao, W. Qian and F. Wei, Carbon, 2013, 51, 390;
R. K. Paul, S. Badhulika, N. Saucedo and A. Mulchandani, Anal.
Chem., 2012, 84, 8171; O. Akhavan and E. Ghaderi, Small, 2013,
9, 3593.
4 A. Esfandiar, N. Kybert, E. Dattoli, G. H. Han, B. Lerner, O. Akhavan,
A. Irajizad and A. T. C. Johnson, Appl. Phys. Lett., 2013, 103, 183110;
X. Zhu, X. Song, X. Ma and G. Ning, ACS Appl. Mater. Interfaces, 2014,
6, 7189.
5 R. Pernites, A. Vergara, A. Yago, K. Cui and R. Advincula, Chem.
Commun., 2011, 47, 9810.
6 K. Han, C. Ai Li, B. Han, M. P. N. Bui, X. H. Pham, J. Choo,
M. Bachman, G. P. Li and G. H. Seong, Langmuir, 2010, 26, 9136.
7 M. Marquez and B. P. Grady, Langmuir, 2004, 20, 10998.
8 M. J. Felipe, N. Estillore, R. Pernites, T. Nguyen, R. Ponnapati and
R. Advincula, Langmuir, 2011, 27, 9327.
9 J. F. Ambrose and R. F. Nelson, J. Electrochem. Soc., 1968, 115,
1159; H. Macit, S. Sen and M. J. Sacak, Appl. Polym. Sci., 2005,
96, 894.
10 R. W. Coughlin and M. Farooque, Nature, 1979, 279, 301;
R. W. Coughlin and M. Farooque, Ind. Eng. Chem. Process Des.
Dev., 1980, 19, 211; T. Mu¨hl and S. Myhra, Nanotechnology, 2007,
18, 155304; J. N. Barisci, G. G. Wallace and R. H. Baughman,
J. Electroanal. Chem., 2000, 488, 92; T. Ito, L. Sun and R. M.
Crooks, Electrochem. Solid-State Lett., 2003, 6, C4.
Funding from Kuraray America Inc., NSF STC- 0423914 and
DMR-1304214 are gratefully acknowledged. We also thank the
support from Dr Toshio Suzuki and Yoshiro Kondo.
Notes and references
11 I. Jung, H. Y. Jang, J. Moon and S. Park, Nanoscale, 2014, 6, 6482.
12 C. Zhu, D. Guo, Y. Fang and S. Dong, ACS Nano, 2010, 4, 2429.
13 W. Ren, R. Saito, L. Gao, F. Zheng, Z. Wu, B. Liu, M. Furukawa,
J. Zhao, Z. Chen and H.-M. Cheng, Phys. Rev. B: Condens. Matter
Mater. Phys., 2010, 81, 035412.
1 A. K. Geim and K. S. Novoselove, Nat. Mater., 2007, 6, 183;
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigoreiva and A. A. Firsov, Science, 2004,
306, 666; M. Allen, V. Tung and R. Kaner, Chem. Rev., 2010,
110, 132; J. D. Mangadlao, C. Santos, M. J. L. Felipe, A. C. de Leon,
7632 | Chem. Commun., 2015, 51, 7629--7632
This journal is ©The Royal Society of Chemistry 2015