scope is rather limited. Very recently, Gagnon and co-workers6
reported an elegant copper-mediated direct N-cyclopropylation
of azoles and amides using tricyclopropylbismuth as a donor
of cyclopropyl group.7 Although the reaction proceeded in good
to excellent yields with a broad substrate scope, the limited
availability and stability of the bismuth reagent leave neverthe-
less room for improvement.
Copper-Mediated N-Cyclopropylation of Azoles,
Amides, and Sulfonamides by Cyclopropylboronic
Acid
Se´bastien Be´nard, Luc Neuville, and Jieping Zhu*
Institut de Chimie des Substances Naturelles, CNRS,
Transition-metal-catalyzed cross-coupling reactions for the for-
mation of carbon-heteroatom bonds have been a subject of
intensive research during the past few years.8 Among them, the
copper-promoted coupling of amines with organoboronic acids has
emerged as a powerful tool since the initial report of Chan and
Lam9 and has found wide applications because of the mildness of
the reaction conditions.10 Cyclopropylboronic acids are easily
available and are relatively stable to air and water. Although they
have been used in palladium-catalyzed reaction to create C-C
bonds,11 cyclopropylboronic acids have not been employed for the
formation of C-N bond at the outset of this work.
91198 Gif-sur-YVette Cedex, France
ReceiVed May 14, 2008
Despite a reported unsuccessful attempt at coupling of cyclo-
propylboronc acid and aniline under Chan-Lam conditions,12 we
decided to evaluate in detail the reaction of cyclopropylboronic
acid with azoles and amides, reasoning that the increased acidity
of NH in these compounds could facilitate the desired transforma-
tion. A recent report by Tsuritani13 on the copper-mediated coupling
of cyclopropylboronic acid with indoles and cyclic amides prompted
us to report our own results in this Note.
Reaction of azoles, amides, and sulfonamides in dichloro-
ethane with readily available cyclopropylboronic acid in the
presence of copper acetate and sodium carbonate afforded
the N-cyclopropyl derivatives in good to excellent yields.
(5) (a) Kang, J.; Kim, K. S. J. Chem. Soc., Chem. Commun. 1987, 897–898.
(b) Gillaspy, M. L.; Lefker, B. A.; Hada, W. A.; Hoover, D. J. Tetrahedron
Lett. 1995, 36, 7399–7402. (c) Yoshida, Y.; Umeza, K.; Hamada, Y.; Atsumi,
N.; Tabuchi, F. Synlett 2003, 2139–2142. (d) Satoh, T.; Miura, M.; Sakai, K.;
Yokoyama, Y. Tetrahedron 2006, 62, 4253–4261. (e) Liu, J.; An, Y.; Jiang,
H.-Y.; Chen, Z. Tetrahedron Lett. 2008, 49, 490–494.
The cyclopropyl unit is found in a number of natural products
and occupies a central position in pharmaceutical and agro-
chemical science. Indeed, the unique electronic and geometrical
properties1 associated with its metabolic stability2 make the
cyclopropyl a major structural element in fine-tuning the
biological potency of a drug candidate.3 Since nitrogen-
containing molecules are highly represented in bioactive
compounds, the development of synthetic methods allowing
direct introduction of a N-cyclopropyl group is of great
importance in medicinal chemistry.4
Mainly two strategies have previously been developed for
the synthesis of N-cyclopropylated molecules: condensation of
amines/anilines with cyclopropanone equivalents and function-
alization of cyclopropylamines.5 However, both routes gave
generally low yields of desired products and the application
(6) Gagnon, A.; St-Onge, M.; Little, K.; Duplessis, M.; Barabe´, F. J. Am.
Chem. Soc. 2007, 129, 44–45.
(7) (a) Barton, D. H. R.; Finet, J.-P.; Khamsi, J. Tetrahedron Lett. 1986, 27,
3615–3618. (b) Barton, D. H. R.; Finet, J.-P.; Khamsi, J. Tetrahedron Lett. 1987,
28, 887–890. (c) Fedorov, A. Y.; Finet, J.-P. Tetrahedron Lett. 1999, 40, 2747–
2748. (d) Combes, S.; Finet, J.-P Tetrahedron 1999, 55, 33777–3386.
(8) For reviews involving palladium, see:(a) Finet, J. P.; Fedorov, A. Y.;
Combes, S.; Boyer, G. Curr. Org Chem. 2002, 6, 597–626. (b) Hartwig, J. F.
Palladium-Catalyzed Amination of Aryl Halides and Related Reactions. In
Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E.-
I., de Meijere, A., Eds.; Wiley-Interscience: New York, 2002; Vol. 1, pp 1051-
1096. (c) Muci, A. R.; Buchwald, S. L. Practical Palladium Catalysts for C-N
and C-O Bond Formation. In Topics in Current Chemistry; Miyaura, N., Ed.;
Springer-Verlag: Berlin, 2002; Vol. 219, pp 133-205. For a review involving
copper, see: (d) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42,
5400–5449. (e) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. ReV. 2004,
248, 2337–2364. (f) Kienle, M.; Dubbaka, S. R.; Brade, K.; Knochel, P. J. Org.
Chem. 2007, 416, 6–4176. (g) Monnier, F.; Taillefer, M. Angew. Chem., Int.
Ed. 2008, 47, 3096–3099.
(1) (a) Brown, H. C.; Fletcher, R. S.; Johannesen, R. B. J. Am. Chem. Soc.
1951, 73, 213–221. (b) Roberts, J. D.; Chambers, V. C. J. Am. Chem. Soc. 1951,
73, 5030–5034.
(9) (a) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.;
Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941–2944. (b) Chan,
D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron Lett. 1998,
39, 2933–2936.
(2) Shaffer, C. L.; Harriman, S.; Koen, Y. M.; Hanzlik, R. P. J. Am. Chem.
Soc. 2002, 124, 8268–8274.
(3) (a) Patai, S. The Chemistry of the Cyclopropyl Group Part 2; John Wiley
& Sons: New York, 1987; Vol. 1. (b) Salau¨n, J. Cyclopropane Derivatives and
their Diverse Biological Activities. In Topics in Current Chemistry; de Meijere,
A., Ed.; Springer-Verlag: Berlin, 2000; Vol. 207, pp 1-67. (c) Wessjohann,
L. A.; Brandt, W.; Thiemann, T. Chem. ReV. 2003, 103, 1625–1647. (d) Reichelt,
A.; Martin, S. F. Acc. Chem. Res. 2006, 39, 433–442.
(10) Chan, D. M. T.; Lam, P. Y. S. Recent Advances in Copper-promoted
C-Heteroatom Bond Cross-coupling Reaction with Boronic Acids and derivatives.
In Boronic Acids: Preparation and Application in Organic Synthesis and
Medicine; Hall, D. G., Ed.; Wiley-VCH: Weinheim, Germany, 2005; pp 205-
240.
(4) For recent examples, see: (a) De Almeida, M. V.; Saraiva, M. F.; de
Souza, M. V. N.; da Costa, C. F.; Vincente, F. R. C.; Lourenco, M. C. S. Bioorg.
Med. Chem. Lett. 2007, 17, 5661–5664. (b) Borzilleri, R. M.; Bhide, R. S.;
Barrish, J. C.; D’Arienzo, C. J.; Derbin, G. M.; Fargnoli, J.; Hunt, J. T.;
Jeyaseelan, R, Sr.; Kamath, A.; Kukral, D. W.; Marathe, P.; Mortillo, S.; Qian,
L.; Tokarski, J. S.; Wautlet, B. S.; Zheng, X.; Lombardo, L. J. J. Med. Chem.
2006, 49, 3766–3769. (c) Chai, H.; Zhao, Y.; Zhao, C.; Gong, P. Bioorg. Med.
Chem. 2006, 14, 911–917.
(11) (a) Wang, X.-Z.; Deng, M.-Z. J. Chem. Soc., Perkin Trans. 1996, 2663–
2664. (b) Hildenbrand, J. P.; Marsden, S. P. Synlett 1996, 893–894. (c) Zhou,
S.-M.; Yan, Y.-L.; Deng, M.-Z. Synlett 1998, 198–200. (d) Ma, H.-R.; Wang,
X.-H.; Deng, M.-Z. Synth. Commun. 1999, 29, 2477–2485. (e) Zhou, S.-M.;
Yan, Y.-L.; Deng, M.-Z. Tetrahedron Lett. 2000, 41, 3951–3154. (f) Yao, M.-
L.; Deng, M.-Z. Synthesis 2000, 1095–1100. (g) Rubina, M.; Rubin, M.;
Gevorgyan, V. J. Am. Chem. Soc. 2003, 125, 7198–7199. (h) Lemhadri, M.;
Douceet, H.; Santelli, M. Synth. Commun. 2006, 36, 121–128.
10.1021/jo801033y CCC: $40.75
Published on Web 07/09/2008
2008 American Chemical Society
2008, 73, 6441–6444 6441