C O MMU N I C A T I O N S
Scheme 1. Proposed Steric and Electronic Control in Catalytic
Asymmetric Reductive Couplings
(2) (a) Gorla, F.; Togni, A.; Venanzi, L. M.; Abinati, A.; Lianza, F.
Organometallics 1994, 13, 1607-1616. (b) Sodeoka, M.; Ohrai, K.;
Shibasaki, M. J. Org. Chem. 1995, 60, 2648-2649. (c) Fujimura, O. J.
Am. Chem. Soc. 1998, 120, 10032-10039. (d) Motoyama, Y.; Kawakami,
H.; Shimozono, K.; Aoki, K.; Nishiyama, H. Organometallics 2002, 21,
3408-3416.
(
3) (a) Hao, J.; Hatano, M.; Mikami, K. Org. Lett. 2000, 2, 4059-4062. (b)
Koh, J. H.; Larsen, A. O.; Gagn e´ , M. R. Org. Lett. 2001, 3, 1233-1236.
4) Choi, H. W.; Nakajima, K.; Demeke, D.; Kang, F. A.; Jun, H. S.; Wan,
Z. K.; Kishi, Y. Org. Lett. 2002, 4, 4435-4438.
(
(
(
(
5) Sato, Y.; Saito, N.; Mori, M. J. Am. Chem. Soc. 2000, 122, 2371-2372.
6) Bercot, E. A.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 174-175.
7) (a) Br u¨ ckner, R. In ComprehensiVe Organic Synthesis; Trost, B. M., Ed.;
Pergamon: New York, 1991; Vol. 6, Chapter 4.6, pp 873-908. (b) Hill,
R. K. In ComprehensiVe Organic Synthesis; Trost, B. M., Ed.; Perga-
mon: New York, 1991; Vol. 5, Chapter 7.1, pp 785-826. (c) Wipf, P. In
ComprehensiVe Organic Synthesis; Trost, B. M., Ed.; Pergamon: New
York, 1991; Vol. 5, Chapter 7.2, pp 827-873. (d) Hoveyda, A. H.; Evans,
D. A.; Fu, G. C. Chem. ReV. 1993, 93, 1307-1370.
(8) (a) Barchi, J. J., Jr.; Moore, R. E.; Patterson, G. M. L. J. Am. Chem. Soc.
1984, 106, 8193-8197. (b) Bollag, D. M.; McQueney, P. A.; Zhu, J.;
Hensens, O.; Koupal, L.; Liesch, J.; Goetz, M.; Lazarides, E.; Woods, C.
M. Cancer Res. 1995, 55, 2325-2333. (c) Oka, M.; Iimura, S.; Tenmyo,
O.; Sawada, Y.; Sugawara, M.; Ohkusa, N.; Yamamoto, H.; Kawano, K.;
Hu, S.-L.; Fukagawa, Y.; Oki, T. J. Antibiot. 1993, 46, 367-373.
9) Oppolzer, W.; Radinov, R. N. HelV. Chim. Acta 1992, 75, 170-173.
The sense of asymmetric induction in these couplings is
consistent with the model in Scheme 1. Several lines of evidence
point to an oxametallocyclopentene intermediate, arising from
complexes such as A-D.23 Both the axial placement and the
(
(10) Wipf, P.; Ribe, S. J. Org. Chem. 1998, 63, 6454-6455.
(11) Takayanagi, Y.; Yamashita, K.; Yoshida, Y.; Sato, F. Chem. Commun.
1996, 1725-1726.
orientation of a metal-PPh
2
group over the cyclohexyl ring of
(12) (a) Oblinger, E.; Montgomery, J. J. Am. Chem. Soc. 1997, 119, 9065-
NMDPP have been observed in the solid state.24 Rotation of one
9066. (b) See also: Crowe, W. E.; Rachita, M. J. J. Am. Chem. Soc. 1995,
117, 6787-6788.
of the phenyl groups to avoid interaction with the isopropyl group
places a C-H bond in the ligand plane on one side, disfavoring
aldehyde complexation (A and B). Coordination of the aldehyde
to the less encumbered side (C or D) by way of the electron pair
cis to the aldehyde H and placement of the aldehyde R group away
from the metal center appear to minimize steric interactions.
The high enantioselectivity uniquely provided by NMDPP in
these couplings can thus be explained by a cooperative effect
between steric properties of the ligand and electronic differences
of the alkyne substituents. Two of four modes of aldehyde
coordination (A and C) are inconsistent with the sense and degree
of regioselectivity, and one of the remaining two is more accessible
(13) Huang, W.-S.; Chan, J.; Jamison, T. F. Org. Lett. 2000, 2, 4221-4223.
(
(
14) Colby, E. A.; Jamison, T. F. J. Org. Chem. 2003, 68, 156-166.
15) (a) Morrison, J. D.; Burnett, R. E.; Aguiar, A. M.; Morrow, C. J.; Philips,
C. J. Am. Chem. Soc. 1971, 93, 1301-1303. (b) Blum, J.; Eisen, M.;
Schumann, H.; Gorella, B. J. Mol. Catal. 1989, 56, 329-337. (c) Lee,
S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402-3415. (d) Recent chiral
monophosphine review: Komarov, I. V.; B o¨ rner, A. Angew. Chem., Int.
Ed. 2001, 40, 1197-1200.
(
16) Most monophosphines formed catalytically active complexes, but all ee’s
1
2
3
were lower than 25% (R ) Ph, R ) Me, R ) n-Pr). For example:
1
4
(S)-ferrocenylmethylphenylphosphine (15% ee); [(S)-(R)-PPF-OMe]
5% ee); (R,R)-2,5-dimethyl-1-phenylphospholane (0% ee). Nickel com-
(
plexes incorporating diphosphines (e.g., BINAP, BPE, DuPHOS) did not
catalyze the reaction. Couplings utilizing 200 mol % aldehyde were of
much higher yield than those with 100 mol %; reactions employing an
NMDPP/Ni ratio of 2:1 gave slightly higher yields than those with a 1:1
ratio. Kimura and Tamaru have also observed that a combination of a
3
nickel catalyst and Et B effects reductive carbonyl additions; see, for
(D) and leads to the major enantiomer observed. This framework
example: Kimura, M.; Ezoe, A.; Shibata, K.; Tamaru, Y. J. Am. Chem.
Soc. 1998, 120, 4033-4034.
suggests that increased steric differentiation of the two aldehyde
coordination sites might further enhance enantioselectivity. Finally,
the general strategy of tandem electronic and steric control of
enantioselectivity presented here may be applicable to related
reactions involving alkynes, such as those described by our group
and others.4
(
17) The allylic alcohol derived from phenylacetylene and isobutyraldehyde
1
2
3
(
R ) Ph, R ) H, R ) i-Pr) was afforded in 75% ee, >95:5
regioselectivity, and 15% yield. Alkyne cyclotrimerization is competitive
with reductive coupling under these conditions.
(
18) (a) Masamune, S.; Choy, W.; Kerdesky, F. A. J.; Imperiali, B. J. Am.
Chem. Soc. 1981, 103, 1566-1568. (b) Masamune, S.; Hirama, M.; Mori,
S.; Ali, S. A.; Garvey, D. S. J. Am. Chem. Soc. 1981, 103, 1568-1571.
19) (a) Eisenthal, R.; Game, S.; Holman, G. D. Biochim. Biophys. Acta 1989,
-6,12a,23,25
(
9
85, 81-89. (b) Az e´ ma, L.; Bringaud, F.; Blonski, C.; P e´ ri e´ , J. Bioorg.
Acknowledgment. We thank the National Institute of General
Medical Sciences (GM-063755), the NSF (CAREER CHE-
Med. Chem. 2000, 8, 717-722.
(
20) Ciminiello, P.; Costantino, V.; Fattorusso, Magno, S.; Mangioni, A.;
Pansini, M. J. Nat. Prod. 1994, 57, 705-712.
21) (a) Hashiyama, T.; Morikawa, K.; Sharpless, K. B. J. Org. Chem. 1992,
0134704), Merck Research Laboratories, Pfizer, Boehringer-Ingel-
(
heim, Bristol-Myers Squibb, 3M, Johnson & Johnson, the donors
of the Petroleum Research Fund, and MIT for financial support.
We are grateful to Robert D. Jackson, Chudi O. Ndubaku, Justin
P. Cohen, and Elizabeth A. Colby for experimental assistance. The
NSF (CHE-9809061 and DBI-9729592) and NIH (1S10RR13886-
5
7, 5067-5068. (b) Zhu, Y.; Tu, Y.; Yu, H.; Shi, Y. Tetrahedron Lett.
1998, 39, 7819-7822. (c) Davis, F. A.; Chen, B. C. Chem. ReV. 1992,
2, 919-934.
9
(
22) See also: (a) Trost, B. M.; Pinkerton, A. B. J. Am. Chem. Soc. 2002,
124, 7376-7389. (b) D u¨ nkelmann, P.; Kolter-Jung, D.; Nitsche, A.; Demir,
A. S.; Siegert, P.; Lingen, B.; Baumann, M.; Pohl, M.; M u¨ ller, M. J. Am.
Chem. Soc. 2002, 124, 12084-12085.
01) provide partial support for the MIT Department of Chemistry
(23) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003, 42, in press, and
references therein.
Instrumentation Facility.
(
24) Whittall, I. R.; Humphrey, M. G.; Samoc, M.; Luther-Davies, B.; Hockless,
D. C. R. J. Organomet. Chem. 1997, 544, 189-196.
Supporting Information Available: Experimental procedures and
data for compounds 1-17 (PDF). This material is available free of
charge via the Internet at http://pubs.acs.org.
(
25) Reviews: (a) Tamaru, Y. J. Organomet. Chem. 1999, 576, 215-231. (b)
Montgomery, J. Acc. Chem. Res. 2000, 33, 467-473. (c) Ikeda, S.-i. Acc.
Chem. Res. 2000, 33, 511-519. (d) Houpis, I. N.; Lee, J. Tetrahedron
2
000, 56, 817-846. Recent examples involving alkynes: (e) Ni, Y.;
Amarasinghe, K. D.; Montgomery, J. Org. Lett. 2002, 4, 1743-1745. (f)
References
Lozanov, M.; Montgomery, J. J. Am. Chem. Soc. 2002, 124, 2106-2107.
(
g) Ikeda, S.-i.; Miyashita, H.; Taniguchi, M.; Kondo, H.; Okano, M.;
(
1) (a) ComprehensiVe Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer: New York, 1999. (b) Catalytic Asymmetric
Synthesis, 2nd ed.; Ojima, I., Ed.; Wiley-VCH: New York, 2000.
Sato, Y.; Odashima, K. J. Am. Chem. Soc. 2002, 124, 12060-12061.
JA034366Y
J. AM. CHEM. SOC.
9
VOL. 125, NO. 12, 2003 3443