Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
a)
Journal Name
DOI: 10.1039/C7CC04536K
TCO-AY
Cetuximab-Tz
+
+
+
-
c)
250
130
100
70
55
35
25
Membrane
Cytoplasm
Cytoskeleton
Nucleus
A431 vs. CHO-K1 Hit Analysis
e)
d)
250
β-tubulin
Secreted
b)
200
150
100
50
Cetuximab-Tz+TCO-AY
TCO-AYONLY
ER
Mitochondrion
Cell projection
Cell junction
Lipid droplet
Lysosome
1)
2 )
3)
A431
EGFR(+)
Endosome
Golgi apparatus
0
0
15
30
35
A431
CHO-K1
Number of Proteins
Figure 3. Antibody-assisted incorporation of AY for mapping newly synthesized proteomes from A431 cells. a) TCO-AY structure. (right) Incorporation of
TCO-AY in nascent polypeptides. Cells were treated with Cetuximab-Tz (10 μg/mL, where applicable) for 30 min then TCO-AY (3 μM) for 24 h. Labelled
proteins were “click” with TER-azide, followed by SDS-PAGE and in-gel fluorescence scanning.13 β-tubulin was used as the loading control. b) Confocal
images of A431 cells treated with Cetuximab-Tz and TCO-AY. Labelled proteins were visualized by click chemistry with TER-azide (red). (blue): DAPI. Scale
bar = 15 μm. c) Scheme showing TCO-AY incorporation in newly synthesized proteomes by the antibody-assisted strategy to identify labelled proteins by
quantitative MS-based proteomics (SILAC). d) Graphical comparison of high-confidence proteins enriched in treated A431 and CHO-K1 cells. More than
1200 proteins were identified from A431 cells, of which 222 were considered high-confidence hits (plotted). e) Subcellular distribution analysis of high-
confidence proteins identified from treated A431 cells.
9. A. Mahdavi, J. Szychowski, J. T. Ngo, M. J. Sweredoski, R. L.
Graham, S. Hess, O. Schneewind, S. K. Mazmanian and D. A.
Tirrell, Proc. Natl. Acad. Sci. USA 2014, 111, 433-438.
10. K. P. Yuet, M. K. Doma, J. T. Ngo, M. J. Sweredoski, R. L. Graham,
A. Moradian, S. Hess, E. M. Schuman, P. W. Sternberg and D. A.
Tirrell, Proc. Natl. Acad. Sci. USA 2015, 112, 2705-2710.
11. N. Ueki, S. Lee, N. S. Sampson and M. J. Hayman, Nat. Commun.
2013, 4, 2735.
12. J. Liu, Y. Xu, D. Stoleru and A. Salic, Proc. Natl. Acad. Sci. USA
2012, 109, 413-418.
13. J. Ge, C. W. Zhang, X. W. Ng, B. Peng, S. Pan, S. Du, D. Wang, L.
Li, K. L. Lim, T. Wohland and S. Q. Yao, Angew. Chem. Int. Ed.
2016, 55, 4933-4937.
require minimal optimization; (2) the system does not require
genetic modification and Is thus more suitable for tissue and
organism studies; (3) in future, other similarly “caged”
metabolites in addition to puromycin may be delivered to
targeted cells, to achieve cell type-specific labelling of other
biomolecules.
We gratefully acknowledge financial support from National
Medical Research Council (CBRG/0038/2013), Ministry of
Education (MOE2013-T2-1-048) of the Singapore government
and National Science Foundation of Zhejiang Province
(LQ16B020003).
14. Z. Li, Y. Zhu, Y. Sun, K. Qin, W. Liu, W. Zhou and X. Chen, ACS
Chem. Biol. 2016, 11, 3273-3277.
15. S. tom Dieck, L. Kochen, C. Hanus, M. Heumuller, I. Bartnik, B.
Nassim-Assir, K. Merk, T. Mosler, S. Garg, S. Bunse, D. A. Tirrell
and E. M. Schuman, Nat. Methods 2015, 12, 411-414.
16. A. Beck, L. Goetsch, C. Dumontet and N. Corvaia, Nat. Rev. Drug
Discov. 2017, 16, 315-337.
17. R. M. Versteegen, R. Rossin, W. ten Hoeve, H. M. Janssen and
M. S. Robillard, Angew. Chem. Int. Ed. 2013, 52, 14112-14116.
18. X. Fan, Y. Ge, F. Lin, Y. Yang, G. Zhang, W. S. Ngai, Z. Lin, S. Zheng,
J. Wang, J. Zhao, J. Li and P. R. Chen, Angew. Chem. Int. Ed. 2016,
55, 14046-14050.
19. R. Rossin, S. M. van Duijnhoven, W. Ten Hoeve, H. M. Janssen,
L. H. Kleijn, F. J. Hoeben, R. M. Versteegen and M. S. Robillard,
Bioconjug. Chem. 2016, 27, 1697-1706.
20. N. Normanno, A. De Luca, C. Bianco, L. Strizzi, M. Mancino, M.
R. Maiello, A. Carotenuto, G. De Feo, F. Caponigro and D. S.
Salomon, Gene 2006, 366, 2-16.
Notes and references
1. D. C. Dieterich, J. J. Hodas, G. Gouzer, I. Y. Shadrin, J. T. Ngo, A.
Triller, D. A. Tirrell and E. M. Schuman, Nat. Neurosci. 2010, 13,
897-905.
2. N. P. Gauthier, B. Soufi, W. E. Walkowicz, V. A. Pedicord, K. J.
Mavrakis, B. Macek, D. Y. Gin, C. Sander and M. L. Miller, Nat.
Methods 2013, 10, 768-773.
3. T. S. Elliott, F. M. Townsley, A. Bianco, R. J. Ernst, A. Sachdeva,
S. J. Elsasser, L. Davis, K. Lang, R. Pisa, S. Greiss, K. S. Lilley and J.
W. Chin, Nat. Biotechnol. 2014, 32, 465-472.
4. S. E. Stone, W. S. Glenn, G. D. Hamblin and D. A. Tirrell, Curr.
Opin. Chem. Biol. 2017, 36, 50-57.
5. J. T. Ngo, J. A. Champion, A. Mahdavi, I. C. Tanrikulu, K. E. Beatty,
R. E. Connor, T. H. Yoo, D. C. Dieterich, E. M. Schuman and D. A.
Tirrell, Nat. Chem. Biol. 2009, 5, 715-717.
21. C. Pozzi, A. Cuomo, I. Spadoni, E. Magni, A. Silvola, A. Conte, S.
Sigismund, P. S. Ravenda, T. Bonaldi, M. G. Zampino, C.
Cancelliere, P. P. Di Fiore, A. Bardelli, G. Penna and M. Rescigno,
Nat. Med. 2016, 22, 624-631.
22. J. B. Haun, N. K. Devaraj, S. A. Hilderbrand, H. Lee and R.
Weissleder, Nat. Nanotechnol. 2010, 5, 660-665.
23. E. K. Schmidt, G. Clavarino, M. Ceppi and P. Pierre, Nat. Methods
2009, 6, 275-277.
24. D. Wang, S. Du, A. Cazenave-Gassiot, J. Ge, J.-S. Lee, M. R. Wenk
and S. Q. Yao, Angew. Chem. Int. Ed. 2017, 56, 5829-5833.
6. O. Rechavi, M. Kalman, Y. Fang, H. Vernitsky, J. Jacob-Hirsch, L.
J. Foster, Y. Kloog and I. Goldstein, Nat. Methods 2010, 7, 923-
927.
7. R. M. Barrett, H. W. Liu, H. Jin, R. H. Goodman and M. S. Cohen,
ACS Chem. Biol. 2016, 11, 1532-1536.
8. A. Mahdavi, G. D. Hamblin, G. A. Jindal, J. D. Bagert, C. Dong, M.
J. Sweredoski, S. Hess, E. M. Schuman and D. A. Tirrell, J. Am.
Chem. Soc. 2016, 138, 4278-4281.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins