S. Matsukawa et al. / Tetrahedron Letters 44 (2003) 1007–1010
1009
Scheme 1. A plausible mechanism of the regioselective allylation reaction.
mixture was allowed to stand for 10 h at room temper-
ature and the supernatant was transferred to a cen-
trifuge tube. After centrifugation, the supernatant was
taken up and evaporated to give a dark brown pow-
der.14 Although, X-ray analysis was unsuccessful, struc-
tural information was obtained from the IR spectra.
The IR spectra of 1 and 2 in Nujol mulls show bands at
1540 cm−1 for 1 and 1560 cm−1 for 2, which could be
assigned to the delocalized CꢀC stretch characteristic of
h3-allyl moieties, according to the reported IR spectra
of the above allyllanthanide complexes (Fig. 1). In
contrast, the intermediate prepared from YbCl3 was
obtained as a white powder and the IR spectra did not
show any bands at 1540–1560 cm−1. These results sug-
gest that the reaction intermediate prepared from CeCl3
is an h3-allyl lanthanide complex, whereas that pre-
pared from YbCl3 is an another species. It is well
known that Sc(III) and Yb(III) have exceptionally high
catalytic activities in numerous Lewis acid-catalyzed
reactions.15 Their high Lewis acidities prevent
transmetallation due to strong MꢀCl bonds. The model
reaction was examined using dibenzylketone and n-
BuMgBr. The addition products were obtained in excel-
lent yields (98%) with CeCl3. On the other hand,
combined use of YbCl3 and n-butylmagnesium bromide
resulted in a lower yield (24%), probably because of
sluggish transmetalation.
Liu, H.-J.; Shia, K. S.; Shang, X.; Zhu, B.-Y. Tetrahedron
1999, 55, 3803; (e) Takeda, N.; Imamoto, T. Org. Synth.
1999, 76, 228; (f) Imamoto, T. Lanthanides in Organic
Synthesis; Academic Press: London, 1994; p. 80; (g)
Molander, G. A. Chem. Rev. 1992, 92, 29; (h) Imamoto,
T. In Comprehensive Organic Synthesis; Trost, B. M.;
Fleming, I.; Heathcock, C. H., Eds.; Pergamon Press:
Oxford, UK, 1991; Vol. 1, p. 231.
2. (a) Imamoto, T.; Takiyama, N.; Nakamura, K.; Hata-
jima, T.; Kamiya, Y. J. Am. Chem. Soc. 1989, 111, 4392;
(b) Imamoto, T.; Kusumoto, T.; Tawarayama, Y.; Sug-
iura, Y.; Mita, T.; Hatanaka, Y.; Yokoyama, M. J. Org.
Chem. 1984, 49, 3904.
3. For reviews, see: (a) Yamamoto, Y.; Asao, N. Chem.
Rev. 1993, 93, 2207; (b) Roush, W. R. In Comprehensive
Organic Synthesis; Trost, B. M.; Fleming, I.; Heathcock,
C. H., Eds.; Pergamon Press: Oxford, UK, 1991; Vol. 2,
p. 1; (c) Biellmann, J. F.; Ducep, J. B. Org. React. 1982,
27, 1; (d) Courtrois, G.; Miginiac, L. J. Organomet.
Chem. 1974, 69, 1.
4. Yamamoto, Y.; Maruyama, K. J. Org Chem. 1983, 48,
1564.
5. Guo, B.-S.; Doubleday, W.; Cohen, T. J. Am. Chem. Soc.
1987, 109, 4710.
6. (a) Yanagisawa, A.; Habaue, S.; Yamamoto, H. J. Am.
Chem. Soc. 1991, 113, 8955; (b) Yanagisawa, A.; Habaue,
S.; Yasue, K.; Yamamoto, H. J. Am. Chem. Soc. 1994,
116, 6130.
A plausible mechanism of this regioselective allylation
reaction is shown in Scheme 1. Transmetallation of
crotyl Grignard reagent to CeCl3 via the SE2% process
results in an h3-allylcerium species. Carbonyl com-
pounds react with the h3-allylcerium species at a steri-
cally less hindered site to give the a-allylated product.
7. Iqbal, J.; Joseph, S. Tetrahedron Lett. 1989, 30, 2421.
8. For other excellent examples on a-selective allylation
reactions, see: (a) Masuyama, Y.; Kishida, M.; Kurusu,
Y. J. Chem. Soc., Chem. Commun. 1995, 1405; (b)
Miyake, H.; Yamaura, K. Chem. Lett. 1992, 1369; (c)
McNeill, A. H.; Thomas, E. J. Tetrahedron Lett. 1992,
33, 1369; (d) Kanagawa, Y.; Nishiyama, Y.; Ishii, Y. J.
Org. Chem. 1992, 57, 6988; (e) Gambaro, A.; Boaretto,
A.; Marton, D.; Tagliavini, G. J. Organomet. Chem.
1984, 260, 255; (f) Yamamoto, Y.; Maeda, N.;
Maruyama, K. J. Chem. Soc., Chem. Commun. 1983, 742;
(g) Gambaro, A.; Gains, P.; Marton, D.; Peruzzo, V.;
Tagliavini, G. J. Organomet. Chem. 1982, 231, 307.
Sn(OTf)2-catalyzed a-regioselective allylation reaction of
homoallylic alcohols has been reported. See: (h) Nokami,
J.; Yoshizane, K.; Matsuura, H.; Sumida, S. J. Am.
Chem. Soc. 1998, 120, 6609.
In summary, we have demonstrated regioselective allyl-
ation reactions using crotyl and prenyl Grignard
reagent–CeCl3 systems. Regioselectivity was found to
depend on the lanthanide salts. The structures of the
intermediates were investigated based on IR spectra,
and the h3-allylcerium complex is suggested. These
results indicate that the organocerium species, written
as ‘RCeCl2’, are produced from Grignard reagent and
CeCl3, and is one of the active species in Grignard
reagent–CeCl3 systems.
9. Tsutsui, M.; Ely, N. J. Am. Chem. Soc. 1990, 97, 3551.
10. Huang, Z. E.; Chen, M. Q.; Qiu, W. J.; Wu, W. L. Inorg.
Chim. Acta 1987, 131, 742.
11. Wu, W. L.; Chen, M. Q.; Zhou, P. Organometallics 1991,
10, 98.
12. Brunelli, M.; Poggio, S.; Pedretti, U.; Ligli, G. Inorg.
Chim. Acta 1987, 131, 281.
13. Evans, W. J.; Ulibarri, T. A.; Ziller, J. W. J. Am. Chem.
References
1. For recent reports, see: (a) Jain, R. P.; Williams, R. M. J.
Org. Chem. 2002, 63, 6361; (b) Takahashi, S.; Nakata, T.
J. Org. Chem. 2002, 63, 5739; (c) Bartoli, G.; Dalpozzo,
R.; De Nino, A.; Procopio, A.; Sambri, L.; Tararelli, A.
Tetrahedron Lett. 2001, 42, 8833. For reviews, see: (d)
Soc. 1990, 112, 2314.