1
60
R. A. Fernandes, A. B. Ingle
LETTER
(4) (a) Seibert, S. F.; Krick, A.; Eguereva, E.; Kehraus, S.;
9
good yield (70%). The acid-catalyzed deprotection of
TBDMS ether and the ketal group failed to deliver free
bassianolone (1) in a single step. A stepwise removal of
TBDMS group first, followed by the ketal group, was ex-
ecuted. The compound 18 when treated with excess of
TBAF, deprotection of the ketal group was also observed
giving the mixture of 2 and 3, and no free bassianolone
was obtained. When compound 18 was treated with 1.5
equivalents of TBAF, the deprotection of only TBDMS
ether was observed to give 19 (70%). All attempts under
varied acid-catalyzed conditions to deprotect the ketal
functionality proved futile to obtain free bassianolone. In
all cases the mixture of 2 and 3 was obtained in variable
yields. In one of the attempts with CAN-mediated11
deprotection of the ketal functionality a cleaner deprotec-
tion–spiroketalization occurred affording 2 and 3 in high-
er yields. The crude mixture of 2 and 3 was easily
separated by flash column chromatography providing 2
Kónig, G. M. Org. Lett. 2007, 9, 239. (b) Li, X.; Yao, Y.;
Zheng, Y.; Sattler, I.; Lin, W. Arch. Pharm. Res. 2007, 30,
812. (c) Li, X.; Sattler, I.; Lin, W. J. Antibiot. 2007, 60, 191.
(5) Ramana, C. V.; Suryawanshi, S. B.; Gonnade, R. G. J. Org.
Chem. 2009, 74, 2842.
(
6) (a) Massad, S. K.; Hawkins, L. D.; Baker, D. C. J. Org.
Chem. 1983, 48, 5180. (b) Kim, D.; Lee, J.; Shim, P. J.; Lim,
J. I.; Doi, T.; Kim, S. J. Org. Chem. 2002, 67, 772.
(
c) Stivala, C. E.; Zakarian, A. Org. Lett. 2009, 11, 839.
1
0
(7) For olefin cross metathesis, see: (a) Connon, S. J.; Blechert,
S. Angew. Chem. Int. Ed. 2003, 42, 1900. (b) Chatterjee,
A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am.
Chem. Soc. 2003, 125, 11360. (c) Lipshutz, B. H.;
Aguinaldo, G. T.; Ghorai, S.; Voigtritter, K. Org. Lett. 2008,
10, 1325; and references cited therein.
(
8) Reviews: (a) Zaitsev, A. B.; Adolfsson, H. Synthesis 2006,
725. (b) Bolm, C.; Hildebrand, J. P.; Muniz, K. In
1
Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.;
Wiley-VCH: Weinheim, 2000, 399. (c) Kolb, H. C.;
VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994,
(
(
[
59%) and 3 (33%). The spectral and analytical data of
+)-cephalosporolide E (2) along with its optical rotation
a] +49.2 (c 0.25, CHCl ) were in excellent agreement
94, 2483. (d) Johnson, R. A.; Sharpless, K. B. Asymmetric
Catalysis in Organic Synthesis; Ojima, I., Ed.; VCH: New
2
5
York, 1993, 227.
D
3
2
30
2
9) 1H NMR and 13C NMR studies of purified product indicated
(
with that reported {lit. [a] +51.3 (c 0.42, CHCl )}.
D
3
2
5
single diastereomer.
Similarly, (–)-cephalosporolide F (3) had [a]
–69.1 (c5
D
1
25
Data for 18
0
.15, CHCl ) {lit. [a] –33.3 (c 0.79, CHCl ) and lit.
D
3
D
3
25
Colourless oil; [a]D +10.2 (c 0.2, CHCl ). IR (CHCl ):
25
3
3
[
a] +95.2 (c 0.9, CHCl ) for its enantiomer}. The spec-
3
n = 3463, 3022, 2973, 1772, 1646, 1528, 1421, 1347, 1216,
tral data for (–)-cephalosporolide F (3) matched well with
–1 1
1
045, 927, 669 cm . H NMR (400 MHz, CDCl /TMS):
3
2
that reported.
d = 0.02 (s, 3 H), 0.03 (s, 3 H), 0.86 (s, 9 H), 1.11 (d, J = 6.1
Hz, 3 H), 1.43–1.49 (m, 2 H), 1.50–1.58 (m, 1 H), 1.72–1.80
In summary, the first total synthesis of natural (+)-cepha-
losporolide E and (–)-cephalosporolide F has been
achieved starting from (R)-methyl lactate and employing
cross metathesis, asymmetric dihydroxylation, and
spiroketalization as the key steps. The synthesis is com-
pleted in nine steps and overall yields of 6.3% and 3.5%
for 2 and 3, respectively.
(
(
m, 1 H), 2.24–2.37 (m, 2 H), 2.54 (d, J = 17.7 Hz, 1 H), 2.72
dd, J = 17.7, 5.8 Hz, 1 H), 3.44 (br s, OH), 3.75–3.80 (m, 1
H), 3.93–4.02 (m, 4 H), 4.36–4.38 (m, 1 H), 4.55–4.60 (m, 1
1
3
H). C NMR (100 MHz, CDCl ): d = –4.83, –4.39, 18.0,
3
23.6, 25.7 (3 C), 32.7, 33.7, 34.1, 37.7, 64.1, 64.5, 67.9, 68.3,
80.9, 110.1, 175.3. HRMS (ESI-TOF): m/z calcd for
C H O Si + Na: 397.2022; found: 397.2028.
18 34
6
(
10) Data for 19
Colourless oil; [a]D –20.4 (c 0.1, CHCl ). IR (CHCl ):
2
5
3
3
n = 3440, 3018, 2965, 2931, 1773, 1636, 1458, 1407, 1378,
Acknowledgment
–
1 1
1
216, 1160, 1062, 949, 668 cm . H NMR (400 MHz,
Financial support by IRCC, Indian Institute of Technology Bombay
is gratefully acknowledged. A.B.I. thanks CSIR New Delhi for a
research fellowship.
CDCl /TMS): d = 1.21 (d, J = 6.4 Hz, 3 H), 1.47–1.57 (m, 2
3
H), 1.79–1.87 (m, 2 H), 2.33–2.36 (m, 2 H), 2.56 (d, J = 17.7
Hz, 1 H), 2.76 (dd, J = 17.8, 5.9 Hz, 1 H), 3.36–3.45 (br s,
OH), 3.78–3.82 (m, 1 H), 3.98–4.06 (m, 4 H), 4.39–4.41 (m,
1
3
1
H), 4.56–4.61 (m, 1 H). C NMR (100 MHz, CDCl3):
References and Notes
d = 23.6, 33.3 (2 C), 34.3, 37.9, 64.3, 64.7, 67.6, 68.5, 81.1,
1
10.1, 175.5. HRMS (ESI-TOF): m/z calcd for C H O +
(
(
(
1) Oller-López, J. L.; Iranzo, M.; Mormeneo, S.; Oliver, E.;
Cuerva, J. M.; Oltra, J. E. Org. Biomol. Chem. 2005, 3, 1172.
2) Ackland, M. J.; Hanson, J. R.; Hitchcock, P. B.; Ratcliffe,
A. H. J. Chem. Soc., Perkin Trans. 1 1985, 843.
12 20 6
H: 261.1338; found: 261.1341.
(
11) Ates, A.; Gautier, A.; Leroy, B.; Plancher, J.-M.; Quesnel,
Y.; Vanherck, J.-C.; Markó, I. E. Tetrahedron 2003, 59,
8989.
3) Rukachaisirikul, V.; Pramjit, S.; Pakawatchai, C.; Isaka, M.;
Supothina, S. J. Nat. Prod. 2004, 67, 1953.
Synlett 2010, No. 1, 158–160 © Thieme Stuttgart · New York