6
750
J . Org. Chem. 1999, 64, 6750-6755
P a lla d iu m (II)-Ca ta lyzed Oxid a tion of Alcoh ols to Ald eh yd es a n d
Keton es by Molecu la r Oxygen
Takahiro Nishimura, Tomoaki Onoue, Kouichi Ohe, and Sakae Uemura*
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University,
Sakyo-ku, Kyoto 606-8501, J apan
Received April 21, 1999
2
A novel combination of Pd(OAc) /pyridine/MS3A catalyzes the aerobic oxidation in toluene of a
variety of primary and secondary alcohols into the corresponding aldehydes and ketones in high
yields. Various substituents and protecting groups are compatible with this oxidation. The ca. 2:3
ratio of O
2
uptake to product yield is observed, whereas in the absence of MS3A, the ratio is ca.
and its decomposition by MS3A into water and oxygen.
1
:1, suggesting the in situ formation of H O
2 2
A catalytic cycle including the formation of a Pd(II)-alcoholate followed by â-elimination of a
Pd(II)H species and a carbonyl compound and then the formation of a Pd(II)OOH species is proposed.
In tr od u ction
The oxidation of alcohols to aldehydes and ketones is
alcohols using molecular oxygen as a sole reoxidant in
977, many efforts have been made to find a synthetically
1
7-10
useful method for Pd-catalyzed oxidation.
For ex-
1
a fundamental reaction in organic synthesis. For envi-
ronmental and economical reasons, metal-catalyzed reac-
tions using molecular oxygen as a reoxidant are particu-
larly attractive. Many procedures using metal catalysts
ample, the effective aerobic oxidation of benzylic and
allylic alcohols was accomplished by using Pd clusters
8
in the presence of molecular oxygen without co-oxidants.
2 2
A Pd(OAc) /DMSO/O catalytic method has also been
2
3
4
5
6
such as Ru, Co, Cu, Pt, and Rh have been reported.
Since the first example of the Pd-catalyzed oxidation of
9
reported. These studies are quite interesting, but these
systems are not applicable to a wide range of alcohols,
especially for the effective transformation of primary and
secondary aliphatic alcohols to aldehydes and ketones.
(
1) For example: (a) Sheldon, R. A.; Kochi, J . K. Metal-Catalyzed
Oxidations of Organic Compounds; Academic Press: New York, 1984.
b) Hudlicky, M. Oxidations in Organic Chemistry; ACS Monograph
Series; American Chemical Society: Washington, DC, 1990.
2) (a) Tang, R.; Diamond, S. E.; Neary, N.; Mares, F. J . Chem. Soc.,
Chem. Commun. 1978, 562. (b) Matsumoto, M; Ito, S. Synth. Commun.
(
Recently, we have reported the palladium-catalyzed
aerobic oxidation of some alcohols to aldehydes and
ketones using a catalytic amount of Pd(OAc) , pyridine,
2
(
and MS3A under oxygen atmosphere.11 The goal for our
investigation is the elaboration of an operationally simple
and environmentally safe method using commercially
available reagents and oxygen as a sole oxidant, which
should have high selectivity, yield and compatibility with
different functional groups. In this paper, we describe the
full scope and some mechanistic aspects of this aerobic
oxidation.
1
4
1
984, 14, 697. (c) Matsumoto, M.; Watanabe, N. J . Org. Chem. 1984,
9, 3435. (d) Bilgrien, C.; Davis, S.; Drago, R. S. J . Am. Chem. Soc.
987, 109, 3786. (e) B a¨ ckvall, J . E.; Chowdhury, R. L.; Karlsson, U. J .
Chem. Soc., Chem. Commun. 1991, 473. (f) Murahashi, S.-I.; Naota,
T.; Hirai, N. J . Org. Chem. 1993, 58, 7318. (g) Ley, S. V.; Norman, J .;
Griffith, W. P.; Marsden, S. P. Synthesis 1994, 639. (h) Wang, G. Z.;
Andreasson, U.; B a¨ ckvall, J . E. J . Chem. Soc., Chem. Commun. 1994,
1
037. (i) Inokuchi, T.; Nakagawa, K.; Torii, S. Tetrahedron Lett. 1995,
6, 3223. (j) Mark o´ , I. E.; Giles, P. R.; Tsukazaki, M.; Chell e´ -Regnaut,
3
I.; Urch, C. J .; Brown, S. M. J . Am. Chem. Soc. 1997, 119, 12661. (k)
Lenz, R.; Ley, S. V. J . Chem. Soc., Perkin Trans. 1 1997, 3291. (l)
Hanyu, A.; Takezawa, E.; Sakaguchi, S.; Ishii, Y. Tetrahedron Lett.
1
9
998, 39, 5557. (m) Hinzen, B.; Lenz, R.; Ley, S. V. Synthesis 1998,
77. (n) Kaneda, K.; Yamashita, T.; Matsushita, T.; Ebitani, K. J . Org.
Resu lts a n d Discu ssion
Chem. 1998, 63, 1750. (o) Matsushita, T.; Ebitani, K.; Kaneda, K.
Chem. Commun. 1999, 265.
On the basis of our previous studies, aerobic oxidation
of alcohols (1.0 mmol) using oxygen as an oxidant was
generally carried out in the presence of Pd(OAc) (0.05
2
mmol), pyridine (0.2 mmol), and MS3A (500 mg) in
toluene (10 mL) under stirring at 80 °C for 2 h (a
standard condition for the oxidation).
(
3) (a) Yamada, T.; Mukaiyama, T. Chem. Lett. 1989, 519. (b)
Iwahama, T.; Sakaguchi, S.; Nishiyama, Y.; Ishii, Y. Tetrahedron Lett.
995, 36, 6923.
4) (a) Munakata, M; Nishibayashi, S; Sakamoto, H J . Chem. Soc.,
1
(
Chem. Commun. 1980, 219. (b) Bhaduri, S.; Sapre, N. Y. J . Chem. Soc.,
Dalton Trans. 1981, 2585. (c) Semmelhack, M. F.; Schmid, C. R.;
Cort e´ s, D. A.; Chou, C. S. J . Am. Chem. Soc. 1984, 106, 3374. (d)
Driscoll, J . J .; Kosman, D. J . J . Am. Chem. Soc. 1987, 109, 1765. (d)
Capdevielle, P.; Sparfel, D.; Baranne-Lafont, J .; Cuong, N. K.; Maumy,
M. J . Chem. Res., Synop. 1993, 10. (e) Liu, X.; Qiu, A.; Sawyer, D. T.
J . Am. Chem. Soc. 1993, 115, 3239. (f) Mark o´ , I. E.; Giles, P. R.;
Tsukazaki, M.; Brown, S. M.; Urch, C. J . Science 1996, 274, 2044. (g)
Mark o´ , I. E.; Tsukazaki, M.; Giles, P. R.; Brown, S. M.; Urch, C. J .
Angew. Chem., Int. Ed. Engl. 1997, 36, 2208. (h) Wang, Y.; DuBois, J .
L.; Hedman, B.; Hodgson, K. O.; Stack, T. D. P. Science 1998, 279,
(7) Blackburn, T. F.; Schwartz, J . J . Chem. Soc., Chem. Commun.
1977, 157.
(8) (a) Kaneda, K.; Fujii, M.; Morioka, K. J . Org. Chem. 1996, 61,
4502. (b) Kaneda, K.; Fujie, Y.; Ebitani, K. Tetrahedron Lett. 1997,
38, 9023.
(9) Peterson, K. P.; Larock, R. C. J . Org. Chem. 1998, 63, 3185.
(10) Other examples of palladium-catalyzed aerobic oxidation, see:
(a) Hronec, M.; Cvengrosov a´ , Z.; Kizlink, J . J . Mol. Catal. 1993, 83,
75. (b) G o´ mez-Bengoa, E.; Noheda, P.; Echavarren, A. M. Tetrahedron
Lett. 1994, 35, 7097. (c) Noronha, G.; Henry, P. M. J . Mol. Catal. A
1997, 120, 75.
5
37. (i) Chaudhuri, P.; Hess, M.; Fl o¨ rke, U.; Wieghardt, K. Angew.
Chem., Int. Ed. 1998, 37, 2217. (j) Mark o´ , I. E.; Gautier, A.; Chell e´ -
Regnaut, I.; Giles, P. R.; Tsukazaki, M.; Urch, C. J .; Brown, S. M. J .
Org. Chem. 1998, 63, 7576.
(5) (a) Heyns, K.; Blazejewicz, L. Tetrahedron 1960, 9, 67. (b) J ia,
C.-G.; J ing, F.-Y.; Hu, W.-D.; Huang, M.-Y.; J iang, Y.-Y. J . Mol. Catal.
(11) (a) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. Tetrahedron
Lett. 1998, 39, 6011. (b) Application of a similar catalytic system for
the reaction of tert-cyclobutanols: Nishimura, T.; Ohe, K.; Uemura,
S. J . Am. Chem. Soc. 1999, 121, 2645.
1
1
994, 91, 139.
6) Martin, J .; Martin, C.; Faraj, M.; Br e´ geault, J .-M. Nouv. J . Chim.
984, 8, 141.
(
1
0.1021/jo9906734 CCC: $18.00 © 1999 American Chemical Society
Published on Web 08/06/1999