Angewandte
Chemie
In conclusion, we have developed novel, nonpolymeric,
and recyclable hypervalent iodine(iii) reagents. These
reagents show promise as useful and safe tools for a wide
range of pharmaceutical and agrochemical research, as they
are highly reactivity and recyclable. Application of 1 and
related compounds to the construction of supramolecular
structures as well as in oxidation reactions is now underway.
[4] a) H. Tohma, S. Takizawa, T. Maegawa, Y. Kita, Angew.Chem.
2000, 112, 1364 – 1368; Angew.Chem.Int.Ed. 2000, 39, 1306 –
1308; b) H. Tohma, H. Morioka, S. Takizawa, M. Arisawa, Y.
Kita, Tetrahedron 2001, 57, 345 – 352; c) H. Tohma, H. Morioka,
Y. Harayama, M. Hashizume, Y. Kita, Tetrahedron Lett. 2001, 42,
6899 – 6902; d) H. Tohma, T. Maegawa, S. Takizawa, Y. Kita,
Adv.Synth.Catal. 2002, 344, 328 – 337; e) H. Tohma, T.
Maegawa, Y. Kita, ARKIVOC 2003, VI, 62 – 70; f) H. Tohma,
T. Maegawa, Y. Kita, Synlett 2003, 723 – 725.
[
5] a) M. Okawara, K. Mizuta, Kogyo Kagaku Zasshi 1961, 64, 232 –
235; b) Y. Yamada, M. Okawara, Makromol.Chem. 1972, 152,
Experimental Section
1
53 – 162; c) H. K. Livingston, J. W. Sullivan, J. I. Musher, J.
Polym.Sci.Part C 1968, 195 – 202; d) M. L. Hallensleben,
Angew.Makromol.Chem. 1972, 27, 223 – 227.
MCPBA(3.12 g, 18 mmol) was added to a stirred solution of
2
(
1.416 g, 1.5 mmol) in CH Cl (150 mL) and AcOH (150 mL) at room
2 2
temperature. The mixture was stirred for 12 h under the same
reaction conditions. The resultant mixture was filtered, and CH Cl
was removed from the filtrate by using a rotary evaporator. Hexanes
were added to the residue to precipitate 1. After filtration, crude 1
was washed with hexanes several times, and was dried in vacuo to give
[6] a) H. Newman, Synthesis 1972, 692 – 693; b) E. B. Merkushev,
N. D. Simakhina, G. M. Koveshnikova, Synthesis 1980, 486 – 487;
c) V. R. Reichert, L. J. Mathias, Macromolecules 1994, 27, 7015 –
7023; d) L. J. Mathias, V. R. Reichert, A. V. G. Muir, Chem.
Mater. 1993, 5, 4 – 5.
[7] a) J. G. Sharefkin, H. Saltzman, Org.Synth.Coll. 1973, 5, 660 –
662; b) A. McKillop, D. Kemp, Tetrahedron 1989, 45, 3299 –
3306; c) P. Kazmierski, L. Skulski, Synthesis 1998, 1721 – 1723.
[8] Crystal data for 1 (C H I O ): M = 1452.60, monoclinic, C2/c
2
2
1
(2.07 g, 97%), colorless crystal; m.p. (decomp.) 195–1968C (from
1
AcOH-CH Cl -hexanes by vapor diffusion method); H NMR
2
2
3
(
300 MHz, CDCl , 258C, TMS): d = 8.09 (d, J(H,H) = 8.7 Hz, 8H;
3
3
ArH), 7.56 (d, J(H,H) = 8.7 Hz, 8H; ArH), 2.20 (s, 12H; AdH),
1
3
2
.01 ppm (s, 24H; OCOCH ); C NMR (75 Hz, CDCl , 258C, TMS):
3
3
50 56
4
18
w
d = 176.5, 151.9, 135.2, 127.7, 119.5, 46.4, 39.6, 20.4 ppm; elemental
(no. 15), a = 24.11(1), b = 17.011(9), c = 33.45(2) , b = 91.57(4),
analysis: calcd for C H I O ·2H O: C 41.34, H 3.89, I 34.95; found:
3
À3
5
0
52
4
16
2
V= 13711(11) , Z = 8, T= 90 K, 1
radiation, m = 18.74 cm
0
0
corrected reflections [(I > 3.00s(I)), 2q = 60.1], 700 parameters.
CCDC 232058 contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge via
www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cam-
bridge Crystallographic Data Centre, 12, Union Road, Cam-
bridge CB21EZ, UK; fax: (+ 44)1223-336-033; or deposit@
ccdc.cam.ac.uk).
= 1.407 gcm , MoKa
calcd
C 41.30, H 3.70, I 35.03.
Typical Oxidation Procedure: Adamantane
.25 mmol) was added to a stirred solution of 3,4,5-trimethoxyphenol
184.2 mg, 1.0 mmol) in MeOH (5 mL) at room temperature. The
À1
,
colorless block 0.30 0.15
1
(354.2 mg,
3
2
.05 mm ; 78690 measured reflections, F refinement, R =
1
0
(
.067, wR = 0.183, 19969 independent observed absorption-
2
mixture was stirred for 10 min. MeOH (10 mL) was then added to the
reaction mixture, and the mixture was filtered. The residue was
washed with MeOH several times, and the residue was recovered as
pure 2 quantitatively. The filtrate was then centrifuged. The super-
natant liquid was evaporated in vacuo to give 3,4,4,5-tetramethoxy-
[
15]
cyclohexa-2,5-dienone quantitatively.
1
[
9] 3: m.p. (decomp.) 196–2038C (from CH Cl /hexanes); H NMR
2
2
Received: March 11, 2004 [Z54234]
(
300 MHz, CDCl /CF CO H (10:1), 258C, TMS): d = 8.24 (d,
3 3 2
3
3
J(H,H) = 8.7 Hz, 8H; ArH), 7.73 (d, J(H,H) = 8.7 Hz, 8H;
1
9
Keywords: green chemistry · hypervalent compounds · iodine ·
ArH), 2.30 ppm (s, 12H; AdH); F NMR (200 MHz, CDCl3/
.
oxidation · synthetic methods
CF CO H (10:1), 258C, hexafluorobenzene (À162.9 ppm)): d =
3
2
À74.51 ppm (s, 24F; OCOCF ); elemental analysis: calcd for
3
C H F I O : C 32.49, H 1.53; found: C 32.82, H 1.86. 4: m.p.
5
0
28 24
4
16
1
(decomp.) 183–1908C; H NMR (300 MHz, CDCl /CF CO H
3 3 2
3
(10:1), 258C, TMS): d = 8.25 (d, J(H,H) = 8.9 Hz, 8H; ArH),
[
1] For recent reviews, see: a) P. J. Stang, V. V. Zhdankin, Chem.
Rev. 1996, 96, 1123 – 1178; b) Y. Kita, T. Takada, H. Tohma, Pure
Appl.Chem. 1996, 68, 627 – 630; c) A. Varvoglis, Hypervalent
Iodine in Organic Synthesis, Academic Press, San Diego, 997;
3
3
7
8
.70 (d, J(H,H) = 8.9 Hz, 8H; ArH), 7.65 (d, J(H,H) = 8.4 Hz,
3
H; ArH), 7.26 (d, J(H,H) = 8.1 Hz, 8H; ArH), 2.38 (s, 12H;
1
3
ArCH ), 2.26 ppm (s, 12H; AdH); C NMR (75 Hz, CDCl3/
CF CO H (10:1), 258C, TMS): d = 154.2, 144.5, 135.9, 135.1,
1
analysis: calcd for C H I O S ·4H O: C 42.09, H 3.87, I
2
3
3
2
d) T. Kitamura, Y. Fujiwara, Org.Prep.Proced.Int.
09 – 458; e) M. Ochiai in Chemistry in Hypervalent Compounds
Ed.: K. Akiba), Wiley-VCH, New York, 1999, chap. 12; f) T.
1997, 29,
29.8, 129.0, 126.3, 121.1, 45.8, 39.9, 21.4 ppm; elemental
4
(
6
2
60
4
16
4
2
8.69, S 7.25; found: C 42.03, H 3.64, I 28.32, S 7.25. 5: m.p.
Wirth, U. H. Hirt, Synthesis 1999, 1271 – 1287; g) V. V. Zhdankin,
P. J. Stang, Chem.Rev. 2002, 102, 2523 – 2584; h) H. Togo, K.
Sakuratani, Synlett 2002, 1966 – 1975; i) Hypervalent Iodine
Chemistry (Ed.: T. Wirth), Springer, Berlin, 2003.
1
(decomp.) 186–1908C; H NMR (270 MHz, CD CN, 258C,
3
3
TMS): d = 8.00 (d, J(H,H) = 8.6 Hz, 8H; ArH), 7.94 (d,
3
3
J(H,H) = 8.4 Hz, 8H; ArH), 7.62 (d, J(H,H) = 8.6 Hz, 8H;
3
ArH), 7.32 (d, J(H,H) = 8.1 Hz, 8H; ArH), 2.37 (s, 12H;
ArCH ), 2.04 ppm (s, 12H; AdH); C NMR (67.8 Hz, CD CN,
2
1
[
2] a) H. Togo, G. Nogami, M. Yokoyama, Synlett 1998, 534 – 536;
b) H. Togo, S. Abe, G. Nogami, M. Yokoyama, Bull.Chem.Soc.
Jpn. 1999, 72, 2351 – 2356; c) S. Abe, K. Sakuratani, H. Togo, J.
Org.Chem. 2001, 66, 6174 – 6177; d) H. Togo, K. Sakuratani,
Synthesis 2003, 21 – 23.
1
3
3
3
58C, TMS): d = 154.6, 145.1, 136.2, 136.1, 133.8, 130.3, 124.0,
12.0, 110.9, 45.8, 40.6, 21.4 ppm; High-resolution cold-spray
ionization
(CSI-MS;
CH CN):
m/z = 1755.88990
3
+
+
(
C H F I O S ) [(MÀOTf) ].
[
3] a) S. V. Ley, A. W. Thomas, H. Finch, J.Chem.Soc.Perkin Trans.
65 56
9
4
9 3
1
1999, 669 – 671; b) S. V. Ley, O. Schucht, A. W. Thomas, P. J.
[10] For the preparation of 3, see: a) J. Gallos, A. Varvoglis, N. W.
Alcock, J.Chem.Soc.Perkin Trans.1 1985, 757 – 763; for the
Murray, J.Chem.Soc.Perkin Trans.1 1999, 1251 – 1252; c) I. R.
Baxendale, S. V. Ley, C. Piutti, Angew.Chem. 2002, 114, 2298 –
preparation of 4, see: b) G. F. Koser, A. G. Relenyi, A. N. Kalos,
L. Rebrovic, R. H. Wettach, J.Org.Chem. 1982, 47, 2487 – 2489;
for the preparation of 5, see: c) T. Kitamura, J. Matsuyuki, H.
Taniguchi, Synthesis 1994, 147 – 148.
2
301; Angew.Chem.Int.Ed.
Baxendale, A.-L. Lee, S. V. Ley, J.Chem.Soc.Perkin Trans.1
002, 1850 – 1857.
2002, 41, 2194 – 2197; d) I. R.
2
Angew. Chem. Int. Ed. 2004, 43, 3595 –3598
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3597