dark-green prism, 0.3130.4230.54 mm; Stoe IPDS diffractometer. The
structure was solved using SIR 92 and refined by the full-matrix least-
2
squares method on F using SHELX 97. Hydrogen atoms (except for the
methyl protons of one toluene molecule) were included at calculated
positions and treated as riding on their bond neighbours. Refinement of
1
146 variables (8 restraints) gave R = 0.0641 and R
w
= 0.1522 for 7340
= 0.1662 for 12010
reflections with I > 2s(I) and R = 0.1038, R
w
independent reflections. CCDC reference number 170079. See http://
www.rsc.org/ suppdata/cc/b1/b110478k/ for crystallographic data in CIF or
other electronic format.
Fig. 2 Reactions catalyzed by 2.
1
2
V. Böhmer, Angew. Chem., Int. Ed. Engl., 1995, 34, 713.
C. D. Gutsche, Calixarenes Revisited, The Royal Society of Chemistry,
Cambridge, 1998.
energetic stabilisation of this host–guest arrangement.15 For the
two independent complex molecules in the unit cell, the shortest
distances between H atoms of toluene and C atoms of the
calixarene are in the following ranges: Hmeta–Cipso(Br) 3.01–3.21
Å, Hmeta–Cortho(Br) 3.30–3.39 Å, Hortho–Cortho(Br) 3.25-3.32 Å.
A preliminary evaluation of the catalytic activity of 2 was
carried out for two important carbene transfer reactions, alkene
cyclopropanation and intramolecular C–H insertion (Scheme
3 C. Wieser, C. B. Dieleman and D. Matt, Coord. Chem. Rev., 1997, 165,
93; S. Steyer, C. Wieser, D. Armspach, D. Matt and J. Harrowfield, in
Calixarenes 2001, ed. Z. Asfari, V. Böhmer, J. Harrowfield and J.
Vicens, Kluwer, Dordrecht, 2001, p. 513.
4
C. Wieser-Jeunesse, D. Matt and A. De Cian, Angew. Chem., Int. Ed.,
998, 37, 2861; I. A. Bagatin, D. Matt, H. Thönnessen and P. G. Jones,
1
Inorg. Chem., 1999, 38, 1585.
S. Shimizu, S. Shirakawa, Y. Sasaki and C. Hirai, Angew. Chem., Int.
Ed., 2000, 39, 1256.
5
2
). The formation of cyclopropanes 4 from alkenes 3 and methyl
diazoacetate (MDA) was readily catalysed by 1 mol% of 2 at 20
C in CH Cl with the following results+styrene, 98% yield,
E+Z = 72+28; cyclohexene, 63%, exo+endo 72+28; 2-methyl-
-butene, 52%, anti:syn = 45+55. A comparison with the
Rh (OAc) -catalysed cyclopropanation of the same alkenes
6 M. Vézina, J. Gagnon, K. Villeneuve, M. Drouin and P. D. Harvey,
Chem. Commun., 2000, 1073.
°
2
2
7 M. P. Doyle, M. A. McKervey and T. Ye, Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds — From Cyclopropanes to
Ylides, John Wiley & Sons, New York, 1998; A. Padwa and K. E.
Krumpe, Tetrahedron, 1992, 48, 5385; J. Adams and D. M. Spero,
Tetrahedron, 1991, 47, 1765.
2
2
4
1
6
with MDA (93%, 62+38; 90%, 79+21; 97%; 60+40) indicates
that steric factors operate in the case of catalyst 2: the yields
decrease for the more highly substituted olefins, and the
diastereoselectivity is reversed in the case of the trisubstituted
alkene. While a full control over the diastereoselectivity in this
8
9
M. Larsen and M. Joergensen, J. Org. Chem., 1996, 61, 6651.
Capsule-shaped coordination motifs have recently been reported for
calix[4]arene-p-sulfonates which are connected by aquo-bridged Na
ions: H. R. Webb, M. J. Hardie and C. L. Raston, Chem. Eur. J., 2001,
7, 3616.
7
type of cyclopropanation reactions is rarely achieved, the steric
conditions at the catalytic site are more influential in the case of
intramolecular reactions since the latter have more compact
transition states. Therefore, we were pleased to find that
complex 2 catalyses the intramolecular C–H insertion of a-
diazo-b-ketoesters 5a,b with a high preference for carbene
insertion into the aromatic C–H bond (R = Me: 6:7 = 90+10,
10 Other calix[4]arenes with a short diametrical bridge at the upper rim: (a)
M. Pitarch, V. McKee, M. Nieuwenhuyzen and M. A. McKervey, J.
Org. Chem., 1998, 63, 946; (b) O. Struck, J. P. M. van Duynhoven, W.
Verboom, S. Harkema and D. N. Reinhoudt, Chem. Commun., 1996,
1
517; (c) P. Lhoták and S. Shinkai, Tetrahedron Lett., 1996, 37, 645; (d)
A. Arduini, S. Fanni, A. Pochini, A. R. Sicuri and R. Ungaro,
Tetrahedron, 1995, 29, 7951; (e) H. Goldmann, W. Vogt, E. Paulus and
V. Böhmer, J. Am. Chem. Soc., 1988, 110, 6811.
7
7% total yield; R = Ph+97+3, 46%). This site selectivity
contrasts with the same reaction catalysed by Rh (OAc)
55+45 ratio for R = Me) but it is close to the selectivity
as catalyst18 for which the steric
obtained with Rh (OOCCPh
2
4
11 Selected examples: (a) T. R. Felthouse, Prog. Inorg. Chem., 1982, 29,
73; (b) E. B. Boyar and S. D. Robinson, Coord. Chem. Rev., 1983, 50,
1
7
(
2
3
)
4
109; (c) L = I : F. A. Cotton, E. V. Dikarev and M. A. Petrukhina,
2
Angew. Chem., Int. Ed., 2000, 39, 2362; (d) L = alkene: F. A. Cotton,
L. R. Falvello, M. Gerards and G. Snatzke, J. Am. Chem. Soc., 1990,
effect of the bulky triphenylacetate ligands was demonstrated.
In conclusion, we have presented a novel type of upper-rim
functionalization of calixarenes with transition-metal units. The
coordination motif in 2 that links two calixarene molecules in a
head-to-head fashion should also be applicable to other metals.
We have shown that the rhodium center in 2 retains its catalytic
properties typical for dirhodium carboxylate complexes and that
the enhanced steric shielding of the catalytic site may be useful
for the control of stereo- and regio-selectivity in catalytic
processes.
1
12, 8979; (e) L = alkyne: F. A. Cotton, E. V. Dikarev, M. A.
Petrukhina and S.-E. Stiriba, Organometallics, 2000, 19, 1401; (f) L =
h -arene: F. A. Cotton, E. V. Dikarev and S.-E. Stiriba, Organome-
tallics, 1999, 118, 2724.
2
12 P. Tarakeshwar, J. Yong Lee and K. S. Kim, J. Phys. Chem. A., 1998,
102, 2253; P. Tarakeshwar, S. Joo Lee and K. S. Kim, J. Phys. Chem.
B, 1999, 103, 184; P. Tarakeshwar and K. S. Kim, J. Phys. Chem. A,
3
1999, 103, 9116. The benzene–AlX complexes are predicted to have a
shorter C–Al contact than the C–B complexes and to have binding
energies dominated by electrostatic interactions. Our toluene–Rh
This research was supported by the Fonds der Chemischen
Industrie.
3
complex is comparable with the AlX complexes.
1
3 Two general mechanisms are discussed for this reaction type, concerted
metal insertion into the aromatic C–H bond and formation of a metal
arenium complex: A. Vigalok, O. Uzan, L. J. W. Shimmon, Y. Ben-
David, J. M. L. Martin and D. Milstein, J. Am. Chem. Soc., 1998, 120,
12539; A. E. Shilov and G. B. Shul’pin, Chem. Rev., 1997, 87, 2879; W.
D. Jones and F. J. Feher, Acc. Chem. Res., 1989, 22, 91.
14 P. Hobza and Z. Havlas, Chem. Rev., 2000, 100, 4253.
15 High level ab initio calculations suggest that the energetic stabilization
of the T-shaped benzene dimer results mainly from dispersion
interactions: P. Hobza, H. L. Selzle and E. W. Schlag, J. Phys. Chem.,
1996, 100, 18790.
16 M. P. Doyle, R. L. Dorow, W. E. Buhro, J. H. Griffin, W. H. Tamblyn
and M. L. Trudell, Organometallics, 1984, 3, 44.
17 D. F. Taber and R. E. Ruckle Jr., J. Am. Chem. Soc., 1986, 108,
7686.
18 S. Hashimoto, N. Watanabe and S. Ikegami, J. Chem. Soc. Chem.
Commun., 1992, 1508.
Notes and references
†
Physical and spectroscopic data for 2: green fine powder from MeOH
o
1
after drying at 50 C/0.001 mbar; yield: 1.46 g (88%); decomp. 4290 °C. H
NMR (500.1 MHz, CDCl ): d 0.83 (t, 6H), 1.06 (t, 6H), 1.76–1.84 (m, 8H),
.06 (d, 4H), 3.63 (t, 4H), 3.90 (t, 4H), 4.30 (d, 4H), 6.75 (s, 4H), 7.29 (s,
3
3
4
1
13
H). C NMR (CDCl
3
): d 9.7, 10.7, 22.8, 23.4, 30.6, 76.5, 77.1, 114.5,
25.3, 129.6, 131.8, 132.0, 138.6, 156.7, 158.6, 185.0. MS (MALDI-TOF,
+
+
dhb matrix): 1879.5 [M ], 1900.5 [(M + Na) ]. C84
calc.: C, 53.69; H, 4.72; found: C, 53.79; H 5.12%.
Crystal data for 2(C Me) : C84 16Br Rh ·4C
triclinic, space group P1 (no. 2); a = 12.801(2), b = 16.916(3), c =
5.080(5) Å, a = 72.15(2), b = 87.38(2), g = 85.48(2)°, V = 5151.9(17)
4 2
H88Br O16Rh (1879.0):
‡
6
H
5
4
88
H O
4
2
7 8
H : M = 2247.5,
¯
2
3
Å , Z = 2 (two independent molecules, each with a crystallographic centre
of symmetry), D
= 1.449 g cm2 , m(Mo-Ka) = 1.936 mm , T = 193 K;
3
21
c
CHEM. COMMUN., 2002, 338–339
339