Paper
NJC
acid. The end point was reached when the colour changed from
pink to colourless.
3 M. Hino and K. Arata, J. Chem. Soc., Chem. Commun., 1980,
851–852.
5
2
4
5
H. Matsuhashi, H. Shibata, H. Nakamura and K. Arata, Appl.
Catal., A, 1999, 187, 99–106.
M. Hino, S. Kobayashi and K. Arata, J. Am. Chem. Soc., 1979,
101, 6439–6441.
Spectral data for the representative compounds:
-(4-Chlorophenyl)-2-(phenylamino)acetonitrile (Table 2, entry 1).
2
À1
Mp: 113–115 1C, IR (KBr): n 3305, 2232, 1602, 1494, 790 cm
.
1
6 Y.-W. Suh, J.-W. Lee and H.-K. Rhee, Appl. Catal., A, 2004,
274, 159–165.
7
H-NMR (500 MHz, CDCl
.9 (t, 1H), 6.76 (d, 2H), 5.33 (d, 1H), 3.74 (br s, 1H). C NMR
125 MHz, CDCl ): d 142.3, 135.5, 133.3, 131.6, 130.5, 122.6,
19.7, 116.3, 50 ppm.
-(2,4-Dichlorophenyl)-2-(phenylamino)acetonitrile (Table 2,
entry 4). Mp: 115–117 1C, IR (KBr): n 3323, 2241, 1622, 1469,
3
) d 8.0 (d, 2H), 7.8 (d, 2H), 7.3 (t, 2H),
1
3
6
D. L. Negelein, R. Lin and R. L. White, J. Appl. Polym. Sci.,
998, 67, 341–348.
(
3
1
1
8
9
X. Song and A. Sayari, Catal. Rev.: Sci. Eng., 1996, 38, 329.
G. Yadav and J. Nair, Microporous Mesoporous Mater., 1999,
33, 1.
2
À1
1
7
6
48 cm . H-NMR (500 MHz, CDCl ) d 5.23 (d, 1H), 6.29 (d, 1H),
3
1
1
0 A. Strecker, Justus Liebigs Ann. Chem., 1850, 75, 27–45.
1 T. Opatz, Synthesis, 2009, 1941–1959.
.86 (d, 2H), 6.92 (t, 1H), 7.27–7.34 (m, 3H), 7.41 (d, 2H) ppm.
2
-(4-Phenyl)-2-(phenylamino)but-3-acetonitrile (Table 2, entry 12).
À1
12 Y. Mikami, K. Takahashi, K. Yazawa, T. Arai, M. Namikoshi,
Mp: 117–119 1C, IR (KBr): n 3344, 2223, 1602, 1504, 1442 cm
.
1
S. Iwasaki and S. Okuda, J. Biol. Chem., 1985, 260, 344–348.
H-NMR (500 MHz, CDCl
.86 (t, 1H), 7.23 (m, 2H), 7.39–7.42 (m, 3H), 7.53–7.56 (m, 2H).
-(2-Thienyl)-2-(phenylamino)acetonitrile (Table 2, entry 14).
3
) d 4.08 (br, 1H), 5.37 (d, 1H), 6.73 (d, 2H),
13 E. J. Martinez, T. Owa, S. L. Schreiber and E. Corey, Proc.
6
Natl. Acad. Sci. U. S. A., 1999, 96, 3496–3501.
2
À1
1
14 D. Enders and J. P. Shilvock, Chem. Soc. Rev., 2000, 29,
59–373.
5 S. Kobayashi and H. Ishitani, Chem. Rev., 1999, 99,
069–1094.
Mp: 97–99 1C, IR (KBr): 3378, 2243 cm
3
; H NMR (CDCl ,
3
5
7
00 MHz) d 3.92 (d, 1H), 5.58 (d, 1H), 6.93 (d, 2H), 7.29 (t, 1H),
.38 (q, 1H), 7.41–7.53 (m, 4H) ppm.
1
1
1
1
1
2
-(4-Isopropylphenylamino)-2-(2-chlorophenyl)acetonitrile
6 P. Vachal and E. N. Jacobsen, J. Am. Chem. Soc., 2002, 124,
10012–10014.
7 Z. Li, Y. Ma, J. Xu, J. Shi and H. Cai, Tetrahedron Lett., 2010,
51, 3922–3926.
(
1
7
Table 2, entry 25). Mp: 69–70 1C, IR (KBr): n 3334, 2233, 1612,
À1
1
515 cm . H NMR (500 MHz, CDCl
3
): d 7.71 (t, 1H), 7.20–
.70 (m, 6H), 6.7 (d, 2H), 5.7 (s, 1H), 2.8 (septed 1H), 1.2 (d, 6H)
1
3
ppm. C NMR (125 MHz, CDCl
1
3
): d 142.8, 141.5, 133.6, 132.3 (d),
31.4, 130.8, 129.5, 128.2, 127.6, 118.3, 115 ppm.
-(4-Bromophenylamino)-2-(2-chlorophenyl)acetonitrile (Table 2,
8 S. Sipos and I. Jablonkai, Tetrahedron Lett., 2009, 50,
1844–1846.
2
À1
19 B. A. B. Prasad, A. Bisai and V. K. Singh, Tetrahedron Lett.,
2004, 45, 9565–9567.
20 L. Royer, S. K. De and R. A. Gibbs, Tetrahedron Lett., 2005,
entry 24). Mp: 112–116 1C, IR (KBr): n 3342, 2314, 1593, 1496 cm
.
1
3
H-NMR (500 MHz, CDCl ): d 7.75 (t, 1H), 7.34–7.51 (m, 6H), 6.54
13
(
d, 2H), 5.58 (s, 1H), 4(s, br, 1H) ppm. C-NMR (125 MHz, CDCl
d 144.4, 133.6, 132.6, 131.7(d), 130, 129.4, 128.3, 117.8, 119.3,
12.9 ppm.
3
):
46, 4595–4597.
2
2
1 S. K. De and R. A. Gibbs, Synth. Commun., 2005, 35, 961–966.
2 S. Kobayashi and T. Busujima, Chem. Commun., 1998,
1
981–982.
2
2
3 H. Ghafuri and M. Roshani, RSC adv., 2014, 4, 58280–58286.
4 N.-u. H. Khan, S. Agrawal, R. I. Kureshy, S. H. Abdi, S. Singh,
E. Suresh and R. V. Jasra, Tetrahedron Lett., 2008, 49,
Conclusion
In conclusion, we have demonstrated that sulfated zirconia sup-
ported on magnetic nanoparticles can act as a novel, heterogeneous,
efficient nano-catalyst for the one-pot three component synthesis of
a-aminonitrile derivatives through a green and facile method. This
method offers several advantages including high yields, short
reaction times, easy work up procedure, reusability of catalyst
and environmentally benign reaction conditions.
6
40–644.
5 B. Das, R. Ramu, B. Ravikanth and K. R. Reddy, Synthesis,
006, 1419–1422.
6 M. G. Dekamin and Z. Mokhtari, Tetrahedron, 2012, 68,
22–930.
7 B. Karmakar and J. Banerji, Tetrahedron Lett., 2010, 51,
748–2750.
2
2
2
2
2
3
3
2
9
2
8 G. A. Olah, T. Mathew, C. Panja, K. Smith and G. S. Prakash,
Catal. Lett., 2007, 114, 1–7.
9 A. Heydari, A. Arefi, S. Khaksar and R. K. Shiroodi, J. Mol.
Catal. A: Chem., 2007, 271, 142–144.
0 Y. Wei, B. Han, X. Hu, Y. Lin, X. Wang and X. Deng, Procedia
Eng., 2012, 27, 632–637.
1 A. L. C. Pereira, S. G. Marchetti, A. Albornoz, P. Reyes, M. Oportus
and M. d. C. Rangel, Appl. Catal., A, 2008, 334, 187–198.
Acknowledgements
We are grateful for the financial support from The Research
Council of Iran University of Science and Technology (IUST), Iran.
Notes and references
1
2
A. Corma and H. Garcia, Chem. Rev., 2003, 103, 4307–4366. 32 M. Dekamin, Z. Mokhtari and Z. Karimi, Sci. Iran., 2011, 18,
T. Okuhara, Chem. Rev., 2002, 102, 3641–3666.
1356–1364.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015