to toxic and/or precious metal systems, metal-free sys-
tems using dioxygen as the sole oxidant for oxidative
The results of control experiments for the oxidative
coupling of benzylamine are illustrated inTable 1. Without
AIBN, only a trace amount of benzylidene-benzylamine
(2% yield) is formed (Table 1, entry 1). In the presence of
10 mol % of AIBN under a nitrogen atmosphere, the imine
product is observed with a 3% yield (Table 1, entry 2).
However, the yield increases to 11% when the reaction is
performed in air (Table 1, entry 3). And the conversion
reaches as high as 95% with good yield (74%) under 1 atm
of dioxygen (Table 1, entry 4). Using 2 equiv of hydrogen
peroxide or tert-butyl peroxide (TBHP) as the oxidant, the
yield is 21% and 15% (Table 1, entries 5À6). The thermal
decomposition of AIBN follows first-order kinetics, and
the half-time in benzene is about 1.4 h at 80°C, 5 h at 70 °C,
2
0
coupling reactions remain scarce.
Azobisisobutyronitrile (AIBN) is extensively used in
initiating radical polymerization under anaerobic reaction
conditions because carbon centered radicals are prone to
capture dioxygen to form peroxy radicals which interrupt
2
1
the polymer chain propagation. Recently, AIBN was
reported to initiate aerobic oxidation reactions by taking
2
2
advantage of peroxy radicals. In this paper we report on
the AIBN initiated metal-free aerobic oxidative coupling
of primary amines to imines and oxidative cyanation of
tertiary amines to R-aminonitriles through highly reactive
imines/iminium ion intermediates.
2
3
and 21 h at 60 °C. The reaction conditions are examined,
and the optimum conditions are 70 °C in toluene where the
yield is up to 83% (Table 1, entries 7À9; Table 1S).
(
11) (a) Hirao, T.; Fukuhara, S. J. Org. Chem. 1998, 63, 7534. (b) Chi,
K.; Hwang, H. Y.; Park, J. Y.; Lee, C. W. Synth. Met. 2009, 159, 26. (c)
Wan, X.; Xing, D.; Fang, Z.; Li, B.; Zhao, F.; Zhang, K.; Yang, L.; Shi,
Z. J. Am. Chem. Soc. 2006, 128, 12046. (d) Dhakshinamoorthy, A.;
Alvaro, M.; Garcia, H. ChemCatChem 2010, 2, 1438. (e) Liu, L.; Zhang,
S.; Fu, X.; Yan, C.-H. Chem. Commun. 2011, 47, 10148. (f) Furukawa,
S.; Ohno, Y.; Shishido, T.; Teramura, K.; Tanaka, T. ACS Catal. 2011,
a
Table 1. AIBN Initiated Oxidation of Benzylamine
1, 1150. (g) Zhou, X.; Ren, Q.; Ji, H. Tetrahedron Lett. 2012, 53, 3369. (h)
Wendlandt, A. E.; Stahl, S. S. Org. Lett. 2012, 14, 2850. (i) Yuan, H.;
Yoo, W.; Miyamura, H.; Kobayashi, S. J. Am. Chem. Soc. 2012, 134,
1
3970.
12) For recent examples catalyzed by Ru, see: (a) Murahashi, S.-I.;
Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312.
b) Murahashi, S.-I.; Komiya, N.; Terai, H. Angew. Chem., Int. Ed. 2005,
4, 6931. (c) Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya, N. J. Am.
(
b
b
initiator
(mol)
additive
(equiv)
temp conv
yield
(%)
entry
gas
(°C)
(%)
(
4
1
2
3
4
5
6
7
8
À
O
2
À
80
80
80
80
80
80
60
70
70
2
3
2
3
Chem. Soc. 2008, 130, 11005. (d) Verma, S.; Jain, S. L.; Sain, B. Catal.
Lett. 2011, 141, 882. (e) Verma, S.; Jain, S. L.; Sain, B. ChemCatChem
AIBN (10%)
N
2
À
À
À
H
2011, 3, 1329.
AIBN (10%) Air
11
95
36
15
44
95
94
11
74
21
15
41
77
83
(
13) Catalyzed by Fe: (a) Han, W.; Ofial, A. R. Chem. Commun.
AIBN (10%)
AIBN (10%)
AIBN (10%)
AIBN (10%)
AIBN (10%)
AIBN (10%)
O
2
2009, 5024. (b) Singhal, S.; Jain, S. L.; Sain, B. Adv. Synth. Catal. 2010,
N
N
2
2
2 2
O (2)
352, 1338. (c) Liu, P.; Liu, Y.; Wong, E. L.; Xiang, S.; Che, C.-M. Chem.
TBHP (2)
Sci. 2011, 2, 2187.
14) Catalyzed by V: Singhal, S.; Jain, S. L.; Sain, B. Chem. Commun.
009, 2371.
15) Catalyzed by Au: Zhang, Y.; Peng, H.; Zhang, M.; Cheng, Y.;
Zhu, C. Chem. Commun. 2011, 47, 2354.
16) Catalyzed by Mo: Alagiri, K.; Prabhu, K. R. Org. Biomol.
Chem. 2012, 10, 835.
17) Catalyzed by Cu: (a) Li, Z.; Li, C.-J. Eur. J. Org. Chem. 2005,
O
O
O
2
2
2
À
À
À
(
2
c
(
9
(
a
Reaction conditions: benzylamine (0.60 mmol), benzene (1 mL), in
a 45 mL Schlenk tube, the gaseous pressure Pinitial = 1 bar, 12 h. GC
b
(
c
results. In toluene, 8 h.
3173. (b) Boess, E.; Schmitz, C.; Klussmann, M. J. Am. Chem. Soc. 2012,
134, 5317.
(
18) For recent photolytic systems: (a) Hari, D. P.; K o€ nig, B. Org.
The oxidation of various primary amines under optimum
conditions is listed in Table 2. Benzylamine is oxidized to
benzylidene-benzylamine in a yield of 89% using 7 mol % of
AIBN (Table 2, entry 1). A variety of substituted benzyl
amine derivatives are also observed to form imines in good
to excellent yields (Table 2, entries 2À7). Electronic effects
associated with electron-donating and -withdrawing sub-
stituents on the phenyl ring have little effect on the efficiency
of the oxidation reaction (Table 2, entries 2À6). A note-
worthy feature of this method is the formation of imine P7
Lett. 2011, 13, 3852. (b) Pan, Y.; Wang, S.; Kee, C. W.; Dubuisson, E.;
Yang, Y.; Loh, K. P.; Tan, C.-H. Green Chem. 2011, 13, 3341. (c)
Rueping, M.; Zhu, S.; Koenigs, R. M. Chem. Commun. 2011, 47, 12709.
d) Rueping, M.; Zoller, J.; Fabry, D. C.; Poscharny, K.; Koenigs,
R. M.; Weirich, T. E.; Mayer, J. Chem.;Eur. J. 2012, 18, 3478.
19) Using a stoichiometric oxidant: (a) Shu, X.; Xia, X.; Yang, Y.;
(
(
Ji, K.; Liu, X.; Liang, Y. J. Org. Chem. 2009, 74, 7464. (b) Allen, J. M.;
Lambert, T. H. J. Am. Chem. Soc. 2011, 133, 1260.
(
20) Typical examples: (a) Schmidt, V. A.; Alexanian, E. J. Angew.
ꢀ
Chem., Int. Ed. 2010, 49, 4491. (b) Pint ꢀe r, A.; Sud, A.; Sureshkumar, D.;
Klussmann, M. Angew. Chem., Int. Ed. 2010, 49, 5004. (c) Giglio, B. C.;
Schmidt, V. A.; Alexanian, E. J. J. Am. Chem. Soc. 2011, 133, 13320. (d)
Schmidt, V. A.; Alexanian, E. J. Chem. Sci. 2012, 3, 1672.
(
21) Kishore, K.; Paramasivam, S.; Sandhya, T. E. Macromolecules
996, 29, 6973.
22) (a) Bentrude, W. G.; Sopchik, A. E.; Gajda, T. J. Am. Chem. Soc.
989, 111, 3981. (b) Fukuda, O.; Sakaguchi, S.; Ishii, Y. Tetrahedron
Lett. 2001, 42, 3479. (c) Aoki, Y.; Sakaguchi, S.; Ishii, Y. Adv. Synth.
Catal. 2004, 346, 199. (d) Aoki, Y.; Sakaguchi, S.; Ishii, Y. Tetrahedron
(Table 2, entry 7), which is a significant improvement for the
preparation of sterically hindered imines.
1
1
1e,24
(
Hetero-
1
cyclic methylamines containing sulfur, oxygen, and nitro-
gen atoms which usually coordinate and deactive the
metal catalysts could also be converted to imines in
moderate to high yields indicating a good tolerance of
heteratoms (Table 2, entries 8À10). Oxidative coupling of
furfurylamine to imine P9 requires 15 mol % of AIBN to
2
005, 61, 5219. (e) Aoki, Y.; Hirai, N.; Sakaguchi, S.; Ishii, Y. Tetra-
hedron 2005, 61, 10995. (f) Nakamura, R.; Obora, Y.; Ishii, Y. Chem.
Commun. 2008, 3417. (g) Kamae, K.; Obora, Y.; Ishii, Y. Bull. Chem.
Soc. Jpn. 2009, 82, 891. (h) Look, J. L.; Wick, D. D.; Mayer, J. M.;
Goldberg, K. I. Inorg. Chem. 2009, 48, 1356. (i) Boisvert, L.; Denney,
M. C.; Hanson, S. K.; Goldberg, K. I. J. Am. Chem. Soc. 2009, 131,
15802. (j) Lloyd, R.; Jenkins, R. L.; Piccinini, M.; He, Q.; Kiely, C. J.;
Carley, A. F.; Golunski, S. E.; Bethell, D.; Bartley, J. K.; Hutchings,
G. J. J. Catal. 2011, 283, 161.
(23) Hook, J. P. V.; Tobolsky, A. V. J. Am. Chem. Soc. 1958, 80, 779.
(24) Love, B. E.; Ren, J. J. Org. Chem. 1993, 58, 5556.
Org. Lett., Vol. 14, No. 22, 2012
5693