Hemi-Labile Ligands in Organolithium Chemistry
J. Am. Chem. Soc., Vol. 121, No. 48, 1999 11115
Scheme 1
We describe herein rate and mechanistic investigations of
three LDA-mediated epoxide rearrangements. A particularly
1
1,13
interesting
rearrangement of cis-cyclooctene oxide (5) is
shown in eq 3. Metalations of 5 using LDA solvated by
(3)
monodentate ethereal ligands such as Et2O11 and n-BuOMe
afford exclusively bicyclooctane 6 very slowly. In contrast,
treatment of 5 with LDA dimer 1 containing coordinated amino
ether 3 in hexane rapidly affords 6 along with minor quantities
of cyclooctenol 7. Interestingly, the [6]:[7] ratio depends on
the concentration of ligand 3.
To fully understand the bifurcated pathway in eq 3 we also
investigated two very clean, seemingly related eliminations: (1)
the LDA-mediated elimination of epoxide 8 (eq 4), which
reactant. Isolating the chelate effect exclusively to the rate-
limiting transition structure also eliminates the problem of
deconvoluting ground state and transition state chelation effects,
offering an unusually clear view of how chelation influences
reactivity.
To further explore the concept of hemi-lability in organo-
lithium chemistry, we have examined the LDA-mediated
reactions of epoxides. The lithium dialkylamide-mediated rear-
rangements of epoxides have been investigated extensively over
the past several years due to their synthetic and theoretical
interest.5 Both R- and â-metalations (Scheme 1) are known to
be sensitive to the choice of substrate, lithium amide, and
solvent. Deuterium-labeling experiments have confirmed the
(4)
,6
certainly proceeds via a vicinal elimination,14 and (2) the LDA-
mediated elimination of norbornene epoxide 10 (eq 5), which
7
stereo- and regiochemistry of metalation in many cases.
Whereas the â-metalation (vicinal elimination) is usually
(
5)
7a,c
implicated in the formation of allylic alcohols, R-metalations
and the resulting oxacarbenoids7 can lead to transannular C-H
,8
9
-11
bond insertions to give saturated alkoxides,
vicinal C-H
12
appears to proceed via an R-metalation/oxacarbenoid pathway.10
By using both LDA/3 and LDA/n-BuOMe mixtures for the
eliminations in eq 3-5, we will document the origins of the
regioselectivity as well as the merits of hemi-labile ligand 3.
insertions to give lithium enolates, or vicinal C-H insertions
to form allylic alkoxides.7
a,d
(
5) Reviews: Satoh, T. Chem. ReV. 1996, 96, 3303. Crandall, J. K.;
Apparu, M. Org. React. 1983, 29, 345.
6) For leading references to asymmetric eliminations of epoxides, see:
(
O’Brien, P. J. Chem. Soc., Perkin Trans. 1 1998, 1439. Hodgson, D. M.;
Gibbs, A. R.; Lee, G. P. Tetrahedron 1996, 52, 14361. Cox, P. J.; Simpkins,
N. S. Tetrahedron: Asymm. 1991, 2, 1.
(7) (a) Morgan, K. M.; Gajewski, J. J. J. Org. Chem. 1996, 61, 820. (b)
Crandall, J. K.; Crawley, L. C.; Banks, D. B.; Lin, L. J. Org. Chem. 1971,
3
6, 510. (c) Thummel, R. P.; Rickborn, B. J. Am. Chem. Soc. 1970, 92,
2
064. (d) Cope, A. C.; Berchtold, G. A.; Peterson, P. E.; Sharman, S. H. J.
Am. Chem. Soc. 1960, 82, 6370.
8) Leading references to oxacarbenoids: Boche, G.; Bosold, F.; Lohrenz,
J. C. W.; Opel, A.; Zulauf, P. Chem. Ber. 1993, 126, 1873. Baumgartner,
T.; Gudat, D.; Nieger, M.; Niecke, E.; Schiffer, T. J. J. Am. Chem. Soc.
(
Results
General. LDA was prepared and recrystallized as described
1
999, 121, 5953.
9) McDonald, R. N.; Steppel, R. N.; Cousins, R. C. J. Org. Chem. 1975,
0, 1694. Crandall, J. K.; Chang, L.-H. J. Org. Chem. 1967, 32, 532. Cope,
1
5
previously and exists as a disolvated dimer (1) under all
(
4
4
conditions studied herein. Pseudo-first-order conditions were
A. C.; Lee, H.-H.; Petree, J. E. J. Am. Chem. Soc. 1958, 80, 2849. Cope,
A. C.; Brown, M.; Lee, H.-H. J. Am. Chem. Soc. 1958, 80, 2855.
established at normal LDA concentrations (0.04-0.40 M) by
restricting the epoxide concentrations to e0.004 M. LDA
concentrations refer to the concentration of the monomer subunit
(10) Hodgson, D. M.; Lee, G. P.; Marriott, R. E.; Thompson, A. J.;
Wisedale, R.; Witherington, J. J. Chem. Soc., Perkin Trans. 1 1998, 2151.
Hodgson, D. M.; Marriott, R. E. Tetrahedron Lett. 1997, 38, 887. Crandall,
J. K. J. Org. Chem. 1964, 29, 2830.
(
normality). The ligand concentrations refer to the concentration
of free ligand by excluding lithium-bound ligand on LDA dimers
1 and 4. The reaction rates were monitored by following loss
of the epoxides and formation of products of quenched samples.
(11) Apparu, M.; Barrelle, M. Tetrahedron 1978, 34, 1541. Boeckman,
R. K. Tetrahedron Lett. 1977, 49, 4281. Whitesell, J. K.; White, P. D.
Synthesis 1975, 602. Cope, A. C.; Lee, H. H.; Petree, H. E. J. Am. Chem.
Soc. 1958, 80, 0, 2849.
(
12) Yanagisawa, A.; Yasue, K.; Yamamoto, Y. Chem. Commun. 1994,
(13) Tierney, J. P.; Alexakis, A.; Mangeney, P. Tetrahedron: Asymm.
1997, 8, 1019. Asami, M.; Suga, T.; Honda, K.; Inoue, S. Tetrahedron Lett.
1997, 38, 6425. Also, see ref 10.
(14) Price, C. C.; Carmelite, D. D. J. Am. Chem. Soc. 1966, 88, 4039.
(15) Bernstein, M. P.; Romesberg, F. E.; Fuller, D. J.; Harrison, A. T.;
Williard, P. G.; Liu, Q. Y.; Collum, D. B. J. Am. Chem. Soc. 1992, 114,
5100.
2
103. Thies, R. W.; Chiarello, R. H. J. Org. Chem. 1979, 44, 1342. Bond,
F. T.; Ho, C.-Y. J. Org. Chem. 1976, 41, 1421. Thummel, R. P.; Rickborn,
B. J. Org. Chem. 1972, 37, 3919. Kissel, C. L.; Rickborn, B. J. Org. Chem.
972, 37, 2060. Thummel, R. P.; Rickborn, B. J. Org. Chem. 1972, 37,
250. Crandall, J. K.; Chang, L.-H. J. Org. Chem. 1967, 32, 435. Cope, A.
1
4
C.; Trumbull, P. A.; Trumbull, E. J. Am. Chem. Soc. 1958, 80, 2844.