Full Paper
131.20 [M+H]+ (0.1), 115.15 [MÀCH3]+ (100), 101.16
[18] a) R. W. W. Hooft, L. H. Straver, A. L. Spek, J. Appl. Crys-
tallogr. 2008, 41, 96–103; b) H. D. Flack, M. Sadki, A. L.
Thompson, D. J. Watkin, Acta Crystallogr. Sect. A: Found.
Crystallogr. 2011, A67, 21–34; c) S. Parsons, P. Pattison,
H. D. Flack, Acta Crystallogr. Sect. A: Found. Crystallogr.
2012, A68, 736–749.
[19] J. D. Dunitz, X-ray analysis and the structure of organic mol-
ecules, Cornell University Press, New York, 1979.
[20] N. Harada, Chirality 2008, 20, 691–723.
[21] P. J. Stephens, J. Phys. Chem. 1985, 89, 748–752.
[22] T. B. Freedman, X. Cao, R. K. Dukor, L. A. Nafie, Chirality
2003, 15, 743–758.
[23] P. J. Stephens, F. J. Devlin, J.-J. Pan, Chirality 2008, 20, 643–
663.
[MÀCHO]+ (93).
(4R)-2,2-dimethyl-1,3-dioxolane-4-carbaldehyde (4R)-
9. (+)-Glyceraldehyde (10.0 mg, 0.11 mmol) was suspend-
ed in acetone (1 mL) and p-toluene sulfonic acid mono-
hydrate (0.06 mg, 0.33 mmol, 0.20 mol%) was added. The
mixture was cooled to 08C and dimethoxypropane
(14.8 mL, 0.12 mmol, 1.09 eq.) was added. After 16 h stir-
ring at room temperature a clear solution had formed,
which was analyzed by GC-MS. GC-MS (EI+): m/z=
131.19 [M+H]+ (0.2), 115.11 [MÀCH3]+ (100), 101.17
[MÀCHO]+ (95).
[24] L. D. Barron, M. P. Bogaard, A. D. Buckingham, J. Am.
Chem. Soc. 1973, 95, 603–605.
[25] L. D. Barron, A. D. Buckingham, Chem. Phys. Lett. 2010,
492, 199–213.
Acknowledgements
This work was supported by the ERC under Grant
Agreements No. StG 258740 and the Max-Planck Society.
We thank Dr. Frank Rominger (Organisch-Chemisches
Institut, Ruprecht-Karls-University Heidelberg) for XRD
measurements. XRD structures of compounds 3, (E)-4,
(S,S)-5, and (S,S)-6 are available from the Cambridge
Crystallographic Data Centre under reference numbers
CCDC 964292, CCDC 964293, CCDC 964294, and
CCDC 964295, respectively.
[26] J. Haesler, I. Schindelholz, E. Riguet, C. G. Bochet, W. Hug,
Nature 2007, 446, 526–529.
[27] P. L. Polavarapu, Chirality 2012, 24, 909–920.
[28] D. Patterson, M. Schnell, J. M. Doyle, Nature 2013, 497,
475–478.
[29] J. Ding, D. G. Hall, Angew. Chem. 2013, 125, 8227–8231;
Angew. Chem. Int. Ed. 2013, 52, 8069–8073.
[30] M. Mꢄller, C. M. Orben, N. Schꢄtzenmeister, M. Schmidt,
A. Leonov, U. M. Reinscheid, B. Dittrich, C. Griesinger,
Angew. Chem. 2013, 125, 6163–6165; Angew. Chem. Int.
Ed. 2013, 52, 6047–6049.
[31] M. Pitzer, M. Kunitski, A. S. Johnson, T. Jahnke, H. Sann, F.
Sturm, L. P. H. Schmidt, H. Schmidt-Bçcking, R. Dçrner, J.
Stohner, J. Kiedrowski, M. Reggelin, S. Marquardt, A.
Schießer, R. Berger, M. S. Schçffler, Science 2013, 341,
1096–1100.
[32] a) A. Faibis, G. Goldring, Z. Vager, Phys. Rev. Lett. 1977,
39, 695–698; b) I. Plesser, Z. Vager, R. Naaman, Phys. Rev.
Lett. 1986, 56, 1559–1562.
References
[1] L. Pasteur, Acad. Sci. Paris C. R. 1848, 26, 535–538.
[2] H. D. Flack, Acta Crystallogr. Sect. A: Found. Crystallogr.
2009, 65, 371–389.
[3] J. H. Van’t Hoff, Arch. Neerl. Sci. Exactes Nat. 1874, 9, 445–
454.
[4] A. M. Rouhi, Chem. Eng. News 1999, 77, 28–32.
[5] S. Allenmark, J. Gawronski, Chirality 2008, 20, 606–608.
[6] E. Fischer, Ber. Dtsch. Chem. Ges. 1894, 27, 2985–2993.
[7] H. Caner, E. Groner, L. Levy, I. Agranat, Drug Discovery
Today 2004, 9, 105–110.
[33] G. Both, E. P. Kanter, Z. Vager, B. J. Zabransky, D. Zajf-
man, Rev. Sci. Instrum. 1987, 58, 424–427.
[34] Z. Vager, N. Naaman, E. P. Kanter, Science 1989, 244, 426–
431.
[35] D. Zajfman, Z. Vager, R. Naaman, F. E. Mitchell, E. P.
Kanter, T. Graber, A. Belkacem, J. Chem. Phys. 1991, 94,
6377–6387.
[36] R. Wester, F. Albrecht, M. Grieser, L. Knoll, R. Repnow, D.
Schwalm, A. Wolf, A. Baer, J. Levin, Z. Vager, D. Zajfman,
Nucl. Instrum. Methods Phys. Res. Sect. A 1998, 413, 379–
396.
[8] P. Brewster, E. D. Hughes, C. K. Ingold, P. A. D. S. Rao,
Nature 1950, 166, 178–179.
[9] E. Fischer, Chem. Ber. 1890, 23, 370–394.
[10] E. Fischer, Chem. Ber. 1907, 40, 102–106.
[11] A. Wohl, F. Momber, Ber. Dtsch. Chem. Ges. 1917, 50, 455–
462.
[37] V. Schurig, in From metal organic chemistry to chromatogra-
phy and stereochemistry (Ed.: H. J. Issaq), Marcel Dekker,
New York, 2001, pp. 327–347.
[38] E. Heilbronner, J. D. Dunitz, Reflections on Symmetry in
Chemistry…and Elsewhere, Verlag Helvetica Chimica Acta
and VCH, Basel and Weinheim, 1993, p. 67.
[12] M. A. Rosanoff, J. Am. Chem. Soc. 1906, 28, 114–121.
[13] W. Klyne, J. Buckingham, Atlas of Stereochemistry: Absolute
Configurations of Organic Molecules, Vols. 1 and 2, 2nd Edi-
tion, Chapman and Hall, London, 1978.
[14] J. M. Bijvoet, A. F. Peerdeman, A. J. van Bommel, Nature
1951, 168, 271–272.
[39] P. Herwig, K. Zawatzky, M. Grieser, O. Heber, B. Jordon-
Thaden, C. Krantz, O. Novotny, R. Repnow, V. Schurig, D.
Schwalm, Z. Vager, A. Wolf, O. Trapp, H. Kreckel, Science
2013, 342, 1084–1086.
[40] K. Zawatzky, P. Herwig, M. Grieser, O. Heber, B. Jordon-
Thaden, C. Krantz, O. Novotny, R. Repnow, V. Schurig, D.
Schwalm, Z. Vager, A. Wolf, H. Kreckel, O. Trapp, Chem.
Eur. J. 2014, 20, 5555–5558.
[15] J. M. Bijvoet, Endeavour 1955, 14, 71–77.
[16] a) H. D. Flack, G. Bernardinelli, D. A. Clemente, A.
Linden, A. L. Spek, Acta Crystallogr. Sect. B: Struct. Sci.
2006, 62, 695–701; b) H. D. Flack, G. Bernardinelli, Chirali-
ty 2008, 20, 681–690.
[17] a) Y. Inokuma, S. Yoshioka, J. Ariyoshi, T. Arai, Y. Hitora,
K. Takada, S. Matsunaga, Rissanen, M. Fujita, Nature 2013,
495, 461–467; Corrigendum: b) Y. Inokuma, S. Yoshioka, J.
Ariyoshi, T. Arai, Y. Hitora, K. Takada, S. Matsunaga,
Rissanen, M. Fujita, Nature 2013, 501, 262.
[41] J. M. Schwab, C.-K. Ho, J. Chem. Soc. Chem. Commun.
1986, 872–873.
Isr. J. Chem. 0000, 00, 1 – 10
ꢂ 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
&8
&
ÞÞ
These are not the final page numbers!