R. Suresh et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 101 (2013) 239–248
247
Fig. 7. Antifungal activity of substituted benzylidene-4-methoxyanilines (entries 65–75) – clustered column chart.
[6] M. Yuan, F. Zhao, W. Zhang, Z.M. Wang, S. Gao, Inorg. Chem. 46 (2007) 11235.
[7] H. Fukuda, K. Amimoto, H. Koyama, T. Kawato, Tetrahedron Lett. 50 (2009)
5376.
[8] Y.C. Liu, C.Y. Yang, Inorg. Chem. Commun. 12 (2009) 704.
[9] A.C.W. Leung, M.J. MacLachlan, J. Inorg. Organomet. Polym. Mater. 17 (2007)
54.
[10] W. Zishen, L. Zhiping, Y. Zhenhuan, Transit. Met. Chem. 18 (1993) 291.
[11] K. Nejati, Z. Rezvani, B. Massoumi, Dyes Pigment. 75 (2007) 653.
[12] E. Naderi, A.H. Jafari, M. Ehteshamzadeh, M.G. Hosseini, Met. Chem. Phys. 115
(2006) 852.
[13] D. Sriram, P. Yogeeswari, N.S. Myneedu, V. Saraswati, BioorgMed, Chem. Lett.
16 (2006) 2127.
[14] V. Stilinovic, D. Cincic, B. Kaitner, Acta. Chim. Slov. 55 (2008) 874.
[15] V. Tiwari, J. Meshram, P. Ali, Der. Pharm. Chim. 2 (2010) 187.
[16] (a) K.M. Mistry, K.R. Desai, E.-J. Chem. 1 (2004) 189;
(b) M. Sayyed, S. Mokle, M. Bokhare, A. Mankar, S. Bhusare, Y. Vibhute, Arkivoc
2 (2006) 187;
ter values of zone of inhibition have been measured. Triplicate
results have been recorded by repeating the same procedure.
The antifungal activities of substituted imines have been stud-
ied and are shown in Fig. 6 for Plates (1–4) and the zone of
inhibition values of the effect is given in Table 6. The clustered
column chart was shown in Fig. 7 and it reveals that all the com-
pounds have moderate antifungal activity against both the fungal
species namely A.niger and Penicilium scups. The Schiff’s bases
having substituents 3-Cl, 3NO2 and 4-NO2 have shown good anti-
fungal activity against A.niger alone. The substituents 2-Br, 3-Br
and 2-NO2 have shown good antifungal activity against Penicilium
scup alone.
(c) J.J. Bhatt, B.R. Shah, H.P. Shah, P.B. Trivedi, N.K. Undavia, N.C. Desai, Indian.
J. Chem. 33B (1994) 189.
Conclusion
[17] A.A. Bakibaev, V.K. Gorshkova, O.V. Arbit, V.D. Filimonov, A.S. Saratikov, Pharm.
Chem. J. 28 (2010) 335.
[18] (a) R.B. Patel, P.S. Desai, K.R. Desai, K.H. Chikhalia, Indian J. Chem. 45B (2006)
773;
(b) S. Kantevari, T. Yempala, P. Yogeswari, D. Sriram, B. Sridhar, Bioorg. Med.
Chem. Lett. 15 (2011) 4316.
[19] A. Kundu, N.A. Shakil, D.B. Saxena, J. Pankaj Kumar, S. Walia, J. Environ. Sci.
Health 44B (2000) 428.
[20] R. Yadav, S.D. Srivastava, S.K. Srivastava, Indian J. Chem. 44B (2005) 1262.
[21] (a) R.T. McBurney, P.C. Fernando, J.C. Walton, RSC Adv. 12 (2012) 1274;
(b) G. Nagendrappa, Resonance (2002) 59.
[22] M. Adib, E. Sheibani, H.R. Bijanzadeh, L.G. Zhu, Tetrahedron 64 (2008)
10681.
[23] (a) A.K. Chakraborti, S. Bhagat, S. Rudrawar, Tetrahedron Lett. 45 (2004) 7641;
(b) P.M. Weintraub, J.S. Sabol, J.M. Kane, D.R. Borcherding, Tetrahedron 59
(2003) 2953.
[24] M. Movrin, D. Maysinger, Pharmaize 34 (1979) 535.
[25] J. Barluenga, J.A. Agustin, F. Aznar, C. Valdes, J. Am. Chem. Soc. 131 (2009)
4031.
A series of aryl imines have been synthesized by oxidative cou-
pling of aryl amines and substituted benzaldehydes using micro-
wave irradiation in the presence of fly-ash: H2SO4 under solvent-
free conditions. This reaction protocol offers a simple, eco-friendly,
non-hazardous, easier work-up procedure and high yields. These
imines were characterized by their physical constants, spectral
data. The UV, IR, NMR spectral data of these imines have been cor-
related with Hammett substituent constants, F and R parameters.
From the results of statistical analyses, the effects of substituents
on the spectral data have been studied. The antimicrobial activities
of all synthesized imines have been studied using Bauer-Kirby
method.
Acknowledgement
[26] D. Bandyophayay, S. Mukherjee, R.R. Rodriguez, B.K. Banik, Molecules 15
(2010) 4207.
The authors thank DST NMR Facility Unit, Department of Chem-
istry, Annamalai University, Annamalainagar-608002 for recording
NMR spectra of compounds (65–75).
[27] S.K. Samanta, I. Kylanlathi, J.Y. Kauhaluoma, Bioorg. Med. Chem. Lett. 15 (2005)
3717.
[28] A. Lumbroso, F. Chevillier, I. Beaudet, T. Bessan, E.L. Grognet, Tetrahedron 65
(2009) 9180.
[29] H.J. Conn, A Handbook on the Nature and Uses of the Dyes Employed in the
Biological Laboratory, sixth ed., The Williams & Wilkins Company, Baltimore 2,
Maryland, USA, 1953.
Appendix A. Supplementary material
[30] B.D. Mather, K. Viswanathan, K.M. Miller, T.E. Long, Prog. Polym. Sci. 31 (2006)
487.
[31] S.F. Martin, Pure Appl. Chem. 81 (2009) 195.
Supplementary data associated with this article can be found, in
[32] (a) A.C. Dash, B. Dash, D. Panda, J. Org. Chem. 50 (1985) 2905;
(b) D.E. Bergbreiter, M. Newcombe, Asymmetric Synthesis, in: J.D. Morrison
(Ed.), Academic Press, Orlando, FL, vol. 2A, 1983, pp. 243.
[33] J.H. Xie, S.F. Zhu, Q.L. Zhou, Chem. Rev. 111 (2011) 1731.
[34] S.E. Denmark, G.L. Beutner, Angew. Chem. Int. Ed. 47 (2008) 1560.
[35] A. Suares, C.W. Downey, G.C. Fu, J. Am. Chem. Soc. 127 (2005) 11244.
[36] S. France, M.H. Shah, A. Weatherwax, H. Wack, J.P. Roth, T. Lectka, J. Am. Chem.
Soc. 127 (2005) 1206.
References
[1] K.Y. Lau, A. Mayr, K.K. Cheung, Inorg. Chim. Acta. 285 (1999) 223.
[2] A.S. Shawali, N.M.S. Harb, K.O. Badahdah, J. Heterocycl. Chem. 22 (1985) 1397.
[3] M. Mustapha, B.R. Thorat, R.G. SudhirSawant, R. Atram, J. Yamgar, Chem.
Pharm. Res. 3 (4) (2011) 5.
[4] R. Yamgar, P. Kamat, D. Khandekar, S. Sawant, J. Chem. Pharm. Res. 3 (2011)
188.
[37] W. Chang, B.J. Ahn, J. Ind. Eng. Chem. 10 (2004) 690;
C.K.Z. Andrade, S.C.S. Takada, L.M. Alves, J.P. Rodrigues, P.A.Z. Suarez, R.F.
Brandão, V.C.D. Soares, Synlett 12 (2004) 2135.
[5] K.C. Gupta, A.K. Sutar, Coord. Chem. Rev. 252 (2008) 1420.