D
S.-C. Lee et al.
Cluster
Synlett
References and Notes
Cai, Y.; Zhu, C.; Rueping, M. Angew. Chem. Int. Ed. 2017, 56,
4282. (s) Chatupheeraphat, A.; Liao, H.-H.; Lee, S.-C.; Rueping,
M. Org. Lett. 2017, 19, 4255.
(1) (a) Modern Organonickel Chemistry; Tamaru, Y., Ed.; Wiley-VCH:
Weinheim, 2005. (b) Tasker, S. Z.; Standley, E. A.; Jamison, T. F.
Nature 2014, 509, 299.
(2) Wang, X.; Dai, Y.; Gong, H. Top. Curr. Chem. 2016, 374, 43.
(3) Yamaguchi, J.; Muto, K.; Itami, K. Top. Curr. Chem. 2016, 374, 55.
(4) (a) Dubbaka, S. R.; Vogel, P. Angew. Chem. Int. Ed. 2005, 44, 7674.
(b) Prokopcov, H.; Kappe, C. O. Angew. Chem. Int. Ed. 2009, 48,
2276. (c) Wang, L.; Hea, W.; Yu, Z. Chem. Soc. Rev. 2013, 42, 599.
(d) Pana, F.; Shi, Z.-J. ACS Catal. 2014, 4, 280.
(5) (a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.;
Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2010, 111,
1346. (b) Yu, D.-G.; Li, B.-J.; Shi, Z.-J. Acc. Chem. Res. 2010, 43,
1486. (c) McGlacken, G. P.; Clarke, S. L. ChemCatChem 2011, 3,
1260. (d) Mesganaw, T.; Garg, N. K. Org. Process Res. Dev. 2013,
17, 29. (e) Kozhushkov, S. I.; Potukuchiw, H. K.; Ackermann, L.
Catal. Sci. Technol. 2013, 3, 562. (f) Cornella, J.; Zarate, C.;
Martin, R. Chem. Soc. Rev. 2014, 43, 8081. (g) Tobisu, M.;
Chatani, N. Top. Curr. Chem. 2016, 374, 41.
(6) Wang, Q.; Su, Y.; Li, L.; Huang, H. Chem. Soc. Rev. 2016, 45, 1257.
(7) (a) Dzik, W. I.; Lange, P. P.; Gooßen, L. J. Chem. Sci. 2012, 3, 2671.
(b) Yamaguchi, J.; Itami, K. In Metal-Catalyzed Cross-Coupling
Reactions and More, Vol. 3; de Meijere, A.; Bräse, S.; Oestreich,
M., Eds.; Wiley-VCH: Weinheim, 2014, 1353. (c) New Trends in
Cross-Coupling: Theory and Applications; Colacot, T. J., Ed.; RSC:
Cambridge, UK, 2015.
(8) Examples of decarbonylative cross couplings of acyl chlorides:
(a) Blaser, H.-U.; Spencer, A. J. Organomet. Chem. 1982, 233, 267.
(b) Obora, Y.; Tsuji, Y.; Kawamura, T. J. Am. Chem. Soc. 1993, 115,
10414. (c) Zhao, X.; Yu, Z. J. Am. Chem. Soc. 2008, 130, 8136.
(d) Ye, W.; Luo, N.; Yu, Z. Organometallics 2010, 29, 1049.
(9) Decarbonylative cross couplings of carboxylic anhydrides:
(a) O'Brien, E. M.; Bercot, E. A.; Rovis, T. J. Am. Chem. Soc. 2003,
125, 10498. (b) Gooßen, L. J.; Paetzold, J. Adv. Synth. Catal. 2004,
346, 1665. (c) Kajita, Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem.
Soc. 2008, 130, 17226. (d) Jin, W.; Yu, Z.; He, W.; Ye, W.; Xiao,
W.-J. Org. Lett. 2009, 11, 1317. (e) Prakash, R.; Shekarrao, K.;
Gogoi, S.; Boruah, R. C. Chem. Commun. 2015, 51, 9972.
(10) (a) Gooßen, L. J.; Paetzold, J. Angew. Chem. Int. Ed. 2002, 41,
1237. (b) Gooßen, L. J.; Paetzold, J. Angew. Chem. Int. Ed. 2004,
43, 1095. (c) Gribkov, D. V.; Pastine, S. J.; Schnürch, M.; Sames,
D. J. Am. Chem. Soc. 2007, 129, 11750. (d) Okita, T.; Kumazawa,
K.; Takise, R.; Muto, K.; Itami, K.; Yamaguchi, J. Chem. Lett. 2017,
46, 218. For examples of Ni-catalyzed decarbonylative transfor-
mations of esters for C–C bond formations, see: (e) Amaike, K.;
Muto, K.; Yamaguchi, J.; Itami, K. J. Am. Chem. Soc. 2012, 134,
13573. (f) Correa, A.; Cornella, J.; Martin, R. Angew. Chem. Int. Ed.
2013, 52, 1878. (g) Meng, L.; Kamada, Y.; Muto, K.; Yamaguchi,
J.; Itami, K. Angew. Chem., Int. Ed. 2013, 52, 10048. (h) Hong, X.;
Liang, Y.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 2017. (i) Lu, Q.;
Yu, H.; Fu, Y. J. Am. Chem. Soc. 2014, 136, 8252. (j) Muto, K.;
Yamaguchi, J.; Musaev, D. G.; Itami, K. Nat. Commun. 2015, 6,
7508. (k) Desnoyer, A. N.; Friese, F. W.; Chiu, W.; Drover, M. W.;
Patrick, B. O.; Love, J. A. Chem. Eur. J. 2016, 22, 4070. (l) Amaike,
K.; Itami, K.; Yamaguchi, J. Chem. Eur. J. 2016, 22, 4384.
(m) Takise, R.; Isshiki, R.; Muto, K.; Itami, K.; Yamaguchi, J. J. Am.
Chem. Soc. 2017, 139, 3340. (n) Liu, X.; Jia, J.; Rueping, M. ACS
Catal. 2017, 7, 4491. For borylation and silylation, see: (o) Guo,
L.; Chatupheeraphat, A.; Rueping, M. Angew. Chem. Int. Ed. 2016,
55, 11810. (p) Pu, X.; Hu, J.; Zhao, Y.; Shi, Z. ACS Catal. 2016, 6,
6692. (q) Guo, L.; Rueping, M. Chem. Eur. J. 2016, 22, 16787. For
amination and cyanation, see: (r) Yue, H.; Guo, L.; Liao, H.-H.;
(11) For reviews, see: (a) Meng, G.; Shi, S.; Szostak, M. Synlett 2016,
27, 2530. (b) Dander, J. E.; Garg, N. K. ACS Catal. 2017, 7, 1413.
(c) Liu, C.; Szostak, M. Chem. Eur. J. 2017, 23, 7157.
(12) For examples of Ni-catalyzed decarbonylative transformations
of amides for C–C bond formations, see: (a) Shi, S.; Meng, G.;
Szostak, M. Angew. Chem. Int. Ed. 2016, 55, 6959. (b) Srimontree,
W.; Chatupheeraphat, A.; Liao, H.-H.; Rueping, M. Org. Lett.
2017, 19, 3091. For borylation and reduction, see: (c) Hu, J.;
Zhao, Y.; Liu, J.; Zhang, Y.; Shi, Z. Angew. Chem. Int. Ed. 2016, 55,
8718. (d) Dey, A.; Sasmal, S.; Seth, K.; Lahiri, G. K.; Maiti, D. ACS
Catal. 2017, 7, 433. (e) Yue, H.; Guo, L.; Lee, S.-C.; Liu, X.;
Rueping, M. Angew. Chem. Int. Ed. 2017, 56, 3972. (f) Simmons,
B. J.; Hoffmann, M.; Hwang, J.; Jackl, M. K.; Garg, N. K. Org. Lett.
2017, 19, 1910. For retro-hydroamidocarbonylation, see: (g) Hu,
J.; Wang, M.; Pu, X.; Shi, Z. Nat. Commun. 2017, 8, 14993. For
examples of Pd- and Rh-catalyzed decarbonylative transforma-
tions of amides, see: (h) Meng, G.; Szostak, M. Angew. Chem. Int.
Ed. 2015, 54, 14518. (i) Liu, C.; Meng, G.; Szostak, M. J. Org.
Chem. 2016, 81, 12023. (j) Meng, G.; Szostak, M. Org. Lett. 2016,
18, 796. (k) Wu, H.; Liu, T.; Cui, M.; Li, Y.; Jian, J.; Wang, H.; Zeng,
Z. Org. Biomol. Chem. 2017, 15, 536. (l) Shi, S.; Szostak, M. Org.
Lett. 2017, 19, 3095.
(13) (a) Leiendecker, M.; Hsiao, C. C.; Guo, L.; Alandini, N.; Rueping,
M. Angew. Chem. Int. Ed. 2014, 53, 12912. (b) Guo, L.;
Leiendecker, M.; Hsiao, C.-C.; Baumann, C.; Rueping, M. Chem.
Commun. 2015, 51, 1937. (c) Leiendecker, M.; Chatupheeraphat,
A.; Rueping, M. Org. Chem. Front. 2015, 2, 350. (d) Liu, X.; Hsiao,
C.-C.; Kalvet, I.; Leiendecker, M.; Guo, L.; Schoenebeck, F.;
Rueping, M. Angew. Chem. Int. Ed. 2016, 55, 6093. (e) Guo, L.;
Hsiao, C.-C.; Yue, H.; Liu, X.; Rueping, M. ACS Catal. 2016, 6,
4438. (f) Guo, L.; Liu, X.; Baumann, C.; Rueping, M. Angew. Chem.
Int. Ed. 2016, 55, 15415. (g) Fan, L.; Jia, J.; Hou, H.; Lefebvre, Q.;
Rueping, M. Chem. Eur. J. 2016, 22, 16437. (h) Yue, H.; Guo, L.;
Liu, X.; Rueping, M. Org. Lett. 2017, 19, 1788. (i) Liu, X.; Yue, H.;
Jia, J.; Guo, L.; Rueping, M. Chem. Eur. J. 2017, 23, 11771.
(14) For reviews on organosilicon compounds, see: (a) Corey, J. Y.;
Braddock-Wilking, J. Chem. Rev. 1999, 99, 175. (b) Brook, M.
Silicon in Organic, Organometallic and Polymer Chemistry;
Wiley: New York, 2000. (c) Denmark, S. E.; Sweis, R. F. Acc.
Chem. Res. 2002, 35, 835. (d) Marciniec, B. Coord. Chem. Rev.
2005, 249, 2374. (e) Nakao, Y.; Hiyama, T. Chem. Soc. Rev. 2011,
40, 4893. (f) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946.
(15) For reviews on organoboron compounds, see: (a) Miyaura, N.;
Suzuki, A. Chem. Rev. 1995, 95, 2457. (b) Miyaura, N. Top. Curr.
Chem. 2002, 219, 11. (c) Miyaura, N. Bull. Chem. Soc. Jpn. 2008,
81, 1535.
(16) (a) Showwell, G. A.; Mills, J. S. Drug Discov. Today 2003, 8, 551.
(b) Denmark, S. E.; Liu, J. H.-C. Angew. Chem. Int. Ed. 2010, 49,
2978. (c) Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56, 388.
(17) Hall, D. G. Boronic Acids: Preparation and Applications in Organic
Synthesis and Medicine; Wiley-VCH: Weinheim, 2005.
(18) (a) Ricci, A. Amino Group Chemistry: From Synthesis to the Life
Sciences; Wiley-VCH: Weinheim, 2008. (b) Lawerence, S. A.
Amines: Synthesis, Properties and Applications; Cambridge Uni-
versity: Cambridge, 2004. (c) Brown, B. R. The Organic Chemis-
try of Aliphatic Nitrogen Compounds; Cambridge University:
Cambridge, 2004. (d) Rappoport, Z. The Chemistry of Anilines,
Part 1 and 2; John Wiley and Sons: New York, 2007.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E