J. Jung et al. / Biochimica et Biophysica Acta 1804 (2010) 1841–1849
1849
[8] M. Ernst, B. Kaup, M. Muller, S. Bringer-Meyer, H. Sahm, Enantioselective
reduction of carbonyl compounds by whole-cell biotransformation, combining a
formate dehydrogenase and a (R)-specific alcohol dehydrogenase, Appl. Micro-
biol. Biotechnol. 66 (2005) 629–634.
[9] S. Kamitori, A. Iguchi, A. Ohtaki, M. Yamada, K. Kita, X-ray structures of NADPH-
dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights
into stereoselective reductions of carbonyl compounds, J. Mol. Biol. 352 (2005)
551–558.
conducted. Using this E. coli whole cell system, we were able to effect
the conversion of ECOB into (S)-ECHB.
Collectively, we proposed the detailed mechanism whereby
YDL124W produced (S)-ECHB exclusively, and demonstrated that
this enzyme could generate (S)-ECHB together with a glucose
dehydrogenase-coupling reaction. Additionally, by adopting the
whole cell system, this coupling system might prove able to generate
high concentrations of (S)-ECHB.
[10] T.R. Cundari, A. Dinescu, D. Zhu, L. Hua, A molecular modeling study on the
enantioselectivity of aryl alkyl ketone reductions by
a NADPH-dependent
carbonyl reductase, J. Mol. Model. 13 (2007) 685–690.
[11] H.C. Yun, H.J. Choi, D. Kim, K.N. Uhm, H.K. Kim, Asymmetric synthesis of (S)-3-
chloro-1-phenyl-1-propanol using Saccharomyces cerevisiae reductase with high
enantioselectivity, Appl. Microbiol. Biotechnol. 87 (2010) 185–193.
[12] L. Di Costanzo, J.E. Drury, T.M. Penning, D.W. Christianson, Crystal structure of
human liver Delta4-3-ketosteroid 5beta-reductase (AKR1D1) and implications for
substrate binding and catalysis, J. Biol. Chem. 283 (2008) 16830–16839.
[13] Q. Ye, D. Hyndman, X. Li, T.G. Flynn, Z. Jia, Crystal structure of CHO reductase, a
member of the aldo-keto reductase superfamily, Proteins 38 (2000) 41–48.
[14] J. Söding, Protein homology detection by HMM-HMM comparison, Bioinformatics
21 (2005) 951–960.
[15] J. Söding, A. Biegert, A.N. Lupas, The HHpred interactive server for protein homology
detection and structure prediction, Nucleic Acids Res. 33 (2005) W244–W248.
[16] A. Sali, T.L. Blundell, Comparative protein modeling by satisfaction of spatial
restraints, J. Mol. Biol. 234 (1993) 779–815.
[17] J. Schymkowitz, J. Borg, F. Stricher, R. Nys, F. Rousseau, L. Serrano, The FoldX web
server: an online force field, Nucleic Acids Res. 33 (2005) W382–W388.
[18] D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham, S. Debolt, D.
Ferguson, G. Seibel, P. Kollman, Amber, a package of computer-programs for
applying molecular mechanics, normal-mode analysis, molecular-dynamics and
free-energy calculations to simulate the structural and energetic properties of
molecules, Comput. Phys. Commun. 91 (1995) 1–41.
5. Conclusions
Baker's yeast YDL124W, YOR120W, and YOL151W reductases
showed high activities for ECOB. YDL124W produced (S)-ECHB ex-
clusively, whereas YOR120W and YOL151W made (R)-form alcohol.
Homology models and docking models with ECOB and NADPH
elucidated their substrate specificity and enantioselectivity; in the
case of YDL124W, the nicotinamide mononucleotide (NMN) ring of
the cofactor is located at the re-face of ECOB, whereas in the case of
YOR120W and YOL151W, the NMN ring of the cofactor is located at
the si-face of ECOB. Recombinant E. coli cells co-expressing YDL124W
and B. subtilis glucose dehydrogenase could recycle NADPH and con-
vert ECOB into (S)-ECHB continuously.
Acknowledgement
[19] D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C.
Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs, J.
Comput. Chem. 26 (2005) 1668–1688.
This work was supported by the 21C Frontier Microbial Genomics
and Applications Center Program, Ministry of Education, Science &
Technology, Republic of Korea, and Gyeonggi Regional Research
Center (GRRC) at the Catholic University of Korea.
[20] R. Huey, G.M. Morris, A.J. Olson, D.S. Goodsell, A semiempirical free energy force
field with charge-based desolvation, J. Comput. Chem. 28 (2007) 1145–1152.
[21] Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G.M. Xiong, W. Zhang, R. Yang, P. Cieplak,
R. Luo, T. Lee, J. Caldwell, J.M. Wang, P.A. Kollman, point-charge force field for
molecular mechanics simulations of proteins based on condensed- phase
quantum mechanical calculations, J. Comput. Chem. 24 (2003) 1999–2012.
[22] J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and
testing of a general amber force field, J. Comput. Chem. 25 (2004) 1157–1174.
[23] B. Huang, M. Schroeder, Using protein binding site prediction to improve protein
docking, Gene 422 (2008) 14–21.
Appendix A. Supplementary data
[24] A. Fisher, R.K.G. Do, A. Sali, Modeling of loops in protein structures, Protein Sci. 9
(2000) 1–21.
References
[25] M.Y. Shen, A. Sali, Statistical potential for assessment and prediction of protein
structures, Protein Sci. 15 (2006) 2507–2524.
[1] K. Goldberg, K. Schroer, S. Lütz, A. Liese, Biocatalytic ketone reduction-a powerful
tool for the production of chiral alcohols-part I: processes with isolated enzymes,
Appl. Microbiol. Biotechnol. 76 (2007) 237–248.
[26] R.A. Laskowski, M.W. MacArthur, D.S. Moss, J.M. Thornton, PROCHECK: a program
to check the stereochemical quality of protein structures, J. Appl. Cryst. 26 (1993)
283–291.
[2] K. Schroer, U. Mackfeld, I.A.W. Tan, C. Wandrey, F. Heuser, S. Bringer-Mayer, A.
Weckbecker, W. Hummel, T. Daußmann, R. Pfaller, A. Liese, S. Lütz, Continuous
asymmetric ketone reduction processes with recombinant Escherichia coli,
J. Biotechnol. 132 (2007) 438–444.
[3] K. Inoue, Y. Makino, N. Itoh, Production of (R)-chiral alcohols by a hydrogen-
transfer bioreduction with NADH-dependent Leifsonia alcohol dehydrogenase
(LSADH), Tetrahedron: assymmetry 16 (2005) 2539–2549.
[4] I.A. Kaluzna, B.D. Feske, W. Wittayanan, I. Ghiviriga, J.D. Stewart, Stereoselective,
biocatalytic reductions of α-chloro-β-keto esters, J. Org. Chem. 70 (2005) 342–345.
[5] T. Ema, H. Yagasaki, N. Okita, M. Takeda, T. Sakai, Asymmetric reduction of ketones
using recombinant E. coli cells that produce a versatile carbonyl reductase with
high enantioselectivity and broad substrate specificity, Tetrahedron 62 (2006)
6143–6149.
[27] R. Luthy, U.J. Bowie, D. Eisenberg, Assessment of protein models with three
dimensional profiles, Nature 356 (1992) 83–85.
[28] Profile-3D User Guide, Accelrys Inc, San Diego, 1999.
[29] W. Zhang, K. O'Connor, D.I.C. Wang, Z. Li, Bioreduction with efficient recycling of
NADPH by coupled permeabilized microorganisms, Appl. Environ. Microbiol. 75
(2009) 687–694.
[30] M. Garcia-Viloca, D.G. Truhlar, J. Gao, Reaction-path energetics and kinetics of the
hydride transfer reaction catalyzed by dihydrofolate reductase, Biochemistry 42
(2003) 13558–13575.
[31] W. Nowak, V. Cody, A. Wojtczak, Computer modeling studies of the structural role
of NADPH binding to active site mutants of human dihydrofolate reductase in
complex with piritrexim, Acta Biochim. Pol. 48 (2001) 903–916.
[32] P.L. Cummins, J.E. Gready, Molecular dynamics and free energy perturbation study
of hydride-ion transfer step in dihydrofolate reductase using combined quantum
and molecular mechanical model, J. Comp. Chem. 19 (1998) 977–988.
[33] K. Ishihara, H. Yamanoto, K. Mitsuhashi, K. Nishikawa, S. Tsuboi, H. Tsuji, N.
Nakajima, Purification and characterization of alpha-keto amide reductase from
Saccharomyces cerevisiae, Biosci. Biotechnol. Biochem. 68 (2004) 2306–2312.
[6] J.C. Moore, D.J. Pollard, B. Kosjek, P.N. Devine, Advances in the enzymatic
reduction of ketones, Acc. Chem. Res. 40 (2007) 1412–1419.
[7] Z. Xu, Y. Liu, L. Fang, X. Jiang, K. Jing, P. Cen, Construction of a two-strain system for
asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to (S)-4-chloro-3-
hydroxybutanoate ethyl ester, Appl. Micobiol. Biotechnol. 70 (2006) 40–46.