Angewandte
Chemie
[
20]
(
20) as a colorless liquid (32 mg, 49%) and xanthone (19) as a white
[7] For exceptions, triggered by the presence of organotitanium
+
solid (25 mg, 45%). 20: HRMS (ESI): m/z 229.0859 [M+H] ;
C H O requires: [M+H] 229.0859; IR (neat film, NaCl): n˜ =
H NMR (400 MHz,
CDCl ): d = 3.89 (3H, s, CH ), 7.04–7.09 (3H, m, ArH), 7.09–7.19
reagents, see a) A. Fernandez-Mateos, P. H. Teijon, R. R.
Clemente, R. R. Gonzalez, Tetrahedron Lett. 2006, 47, 7755 –
7758; b) Y. Yamamoto, D. Matsumi, R. Hattori, K. Itoh, J. Org.
Chem. 1999, 64, 3224 – 3229.
+
1
4
12
3
ꢀ
1
1
3
068, 3039, 2951, 1732, 1603, 1483 cm
;
3
3
(
(
1
1H, m, ArH), 7.27 (1H, ddd, J = 7.6, 7.6, 1.1 Hz, ArH), 7.39–7.43
[8] a) K. R. Wursthorn, H. G. Kuivila, G. F. Smith, J. Am. Chem.
Soc. 1978, 100, 2779 – 2789; b) M. Mori, N. Isono, N. Kaneta, M.
Shibasaki, J. Org. Chem. 1993, 58, 2972 – 2976; c) M. Mori, N.
Kaneta, N. Isono, M. Shibasaki, J. Organomet. Chem. 1993, 455,
255 – 260; d) M. Mori, N. Kaneta, M. Shibasaki, J. Organomet.
Chem. 1994, 464, 35 – 40.
[9] A. Orliac-Le Moing, J. Delaunay, A. Lebouc, J. Simonet,
Tetrahedron 1985, 41, 4483 – 4493.
[10] J. Simonet, J. F. Pilard in Organic Electrochemistry (Eds.: H.
Lund, O. Hammerich), Marcel Dekker, NewYork, 4th ed., 2001,
p. 1171.
2H, m, ArH), 7.52–7.57 (1H, m, ArH), 8.01 ppm (1H, dd, J = 7.8,
1
3
.8 Hz, ArH); C NMR (100 MHz, CDCl ): d = 52.3 (CH ), 118.4
3
3
(CH), 121.1 (CH), 123.3 (CH), 123.4 (C), 123.7 (CH), 129.9 (CH),
1
32.0 (CH), 133.8 (CH), 156.4 (C), 157.8 (C), 166.4 ppm (C); EIMS:
+
m/z 228 (M , 76%), 197 (100), 168 (28), 108 (57), 77 (78). 19:
m.p. 168–1708C (lit.
1
[
20]
m.p. 172–1738C); HRMS (ESI): found:
+
+
97.0596 [M+H] , C H O requires: 197.0597 [M+H] ; IR (KBr):
13 8 2
ꢀ
1
1
n˜ = 3054, 2987, 1655, 1609 cm
;
H NMR (400 MHz, CDCl ): d =
3
7
.38–7.42 (2H, m, ArH), 7.51 (2H, d, J = 8.3 Hz, ArH), 7.72–7.76
1
3
(
(
(
2H, m, ArH), 8.36 ppm (2H, dd, J = 7.9, 1.6 Hz, ArH); C NMR
100 MHz, CDCl ): d = 118.2 (CH), 122.1 (C), 124.1 (CH), 127.0
CH), 135.0 (CH), 156.5 (C), 177.5 (C); EIMS: m/z 196 (M , 100%),
[11] J. March in Advanced Organic Chemistry Reactions, Mechanisms
and Structure, 3rd ed., Wiley-Interscience, NewYork, 1985,
p. 1110 – 1112.
3
+
1
68 (59), 139 (53), 92 (11), 74 (17), 63 (25).
Computational methods: Structures were optimized with the
[12] Z. Shi, V. Goulle, R. P. Thummel, Tetrahedron Lett. 1996, 37,
2357 – 2360.
[13] S. V. Rosokha, S. M. Dibrov, T. Y. Rosokha, J. K. Kochi, Photo-
chem. Photobiol. Sci. 2006, 5, 914 – 924.
[14] S. V. Rosokha, M. D. Newton, M. Head-Gordon, J. K. Kochi,
Chem. Phys. 2006, 324, 117 – 128.
[15] S. V. Rosokha, J. M. Lu, M. D. Newton, J. K. Kochi, J. Am.
Chem. Soc. 2005, 127, 7411 – 7420.
[16] The Marcus equation allows the activation energy for the
electron transfer to be calculated from the total reorganization
energy (that is, the total of the internal and solvent contribu-
tions) and the reaction free energy. However, we use in this case
only the internal reorganization energies, as studies on similar
systems have shown the solvent reorganization energy contri-
bution to be minimal (for example, Refs. [13]–[15]). Nonethe-
less, the calculated activation energies should be considered as
lower limits of the real value.
[
21]
gradient-corrected BP86 functional. Systems involving the iodine
atom employed a large-core, quasi-relativistic, effective core poten-
[
22]
tial with the associated (16s11p6d)/[9s6p1d] valence basis set; all
[
23]
other atoms were described with the def2-TZVP basis set. Single-
point solvent-phase calculations of the gas-phase-optimized struc-
[
24]
tures were performed using the polarizable continuum model with
a dielectric constant of 38.3 for DMF. For the single-point calculations
[
21a–b,25]
the B3LYP functional
G(d,p) basis set.
was used in conjunction with the 6-311 +
[
26]
+
Received: February 7, 2007
Revised: April 25, 2007
Published online: June 4, 2007
Keywords: aryl anions · electron transfer · reduction ·
synthetic methods
.
[
[
[
[
[
17] M. D. Otero, B. Batanero, F. Barba, Tetrahedron Lett. 2006, 47,
8215 – 8216.
18] J. Simonet, M. Chaquiq El Badre, G. Mabon, J. Electroanal.
Chem. 1990, 281, 289.
19] N. C. Yang, P. Kumler, S. S. Yang, J. Org. Chem. 1972, 37, 4022 –
[
1] a) L. Pause, M. Robert, J.-M. Savꢀant, J. Am. Chem. Soc. 1999,
21, 7158 – 7159; b) R. Munusamy, K. S. Dhathareyan, K. K.
1
Balasubramanian, C. S. Venkatachalam, J. Chem. Soc. Perkin
Trans. 2 2001, 1154 – 1166; c) R. J. Enemaerke, T. B. Christensen,
H. Jensen, K. Daasbjerg, J. Chem. Soc. Perkin Trans. 2 2001,
4
026.
20] A. Shaabani, P. Mirzaei, S. Naderi, D. G. Lee, Tetrahedron 2004,
0, 11415 – 11420.
6
1620 – 1630.
21] a) A. D. Becke, Phys. Rev. A 1988, 38, 3098 – 3100; b) J. P.
Perdew, Phys. Rev. B 1986, 33, 8822 – 8824; c) S. H. Vosko, L.
Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200 – 1211.
[
2] Much more stabilized trifluoromethyl and benzylic anions can be
formed using the commercially available reagent tetrakisdime-
thylaminoethene (TDAE), but we have shown that that reagent
does not react with aryl halides (M. Mohan, PhD thesis,
University of Strathclyde, 2005); a) S. Ait-Mohand, N. Takechi,
M. Medebielle, W. R. Dolbier, Jr., Org. Lett. 2001, 3, 4271 –
[
[
[
22] P. Schwerdtfeger, M. Dolg, W. H. E. Schwarz, G. A. Bowmaker,
P. D. W. Boyd, J. Chem. Phys. 1989, 91, 1762 – 1774.
23] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297 –
3305.
4273; b) C. R. Burkholder, W. R. Dolbier, Jr., M. Medebielle,
24] J. Tomasi, B. Mennucci in The Encyclopedia of Computational
Chemistry, Vol. 1 (Ed.: P. von R. Schleyer), Wiley, Athens, 1998,
p. 2547.
J. Fluorine Chem. 2001, 109, 39 – 48.
[
3] J. A. Murphy, T. A. Khan, S.-Z. Zhou, D. W. Thomson, M.
Mahesh, Angew. Chem. 2005, 117, 1380 – 1384; Angew. Chem.
Int. Ed. 2005, 44, 1356 – 1360.
4] a) J. R. Ames, M. A. Houghtaling, D. L. Terrian, T. A. Mitchell,
Can. J. Chem. 1997, 75, 28 – 36; b) R. P. Thummel, V. Goulle, B.
Chen, J. Org. Chem. 1989, 54, 3057 – 3061; c) T. A. Taton, P.
Chen, Angew. Chem. 1996, 108, 1098 – 1100; Angew. Chem. Int.
Ed. Engl. 1996, 35, 1011 – 1013; d) S. Hꢁnig, D. Sheutzov, H.
Schlaf, Justus Liebigs Ann. Chem. 1972, 765, 126.
[
25] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648 – 5652; b) R. H.
Hertwig, W. Koch, Chem. Phys. Lett. 1997, 268, 345 – 351; c) C. T.
Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785 – 789;
d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J.
Phys. Chem. 1994, 98, 11623 – 11627.
[
[
26] a) M. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 1984, 80,
3265 – 3269; b) T. Clark, J. Chandrasekhar, G. W. Spitznagel,
P. V. Schleyer, J. Comput. Chem. 1983, 4, 294 – 301; c) R.
Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys.
[
5] C. P. Andrieux, J. Pinson, J. Am. Chem. Soc. 2003, 125, 14801 –
14806.
1980, 72, 650 – 654.
[
6] G. A. Ross, M. D. Koppang, D. E. Bartak, N. F. Woolsey, J. Am.
Chem. Soc. 1985, 107, 6742 – 6743.
Angew. Chem. Int. Ed. 2007, 46, 5178 –5183ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5183