Planar Chiral N-Heterocyclic-Substituted Pyridinophanes
3
4
3
6.61 (dd, J = 7.8, J = 1.4 Hz, 1 H, Ar-H), 6.85 (d, J = 7.6 Hz,
umn chromatography (cHex/EtOAc, 1:2) to yield pyrazole 20
1 H, Py-H4) ppm. 13C NMR (100 MHz, CDCl3): δ = 27.12 (+, (72.6 mg, 0.264 mmol, 90%) as a colorless solid. Rf = 0.30 (cHex/
COCH3), 34.24 (–, CH2), 34.27 (–, CH2), 34.53 (–, CH2), 36.99 EtOAc, 1:2); m.p. 187 °C. H NMR (400 MHz, CDCl3): δ = 2.84–
1
3
(–, CH2), 126.05 (+, C3-Py), 130.51 (+, C-Ar), 131.76 (+, C-Ar),
3.25 (m, 7 H, HPyp), 3.76–3.82 (m, 1 H, HPyp), 6.37 (dd, J = 7.8,
132.27 (+, C-Ar), 133.64 (+, C-Ar), 133.98 (Cq, C5-Py), 138.37 (Cq, 4J = 1.6 Hz, 1 H, Ar-H), 6.46 (d, J = 7.7 Hz, 1 H, Py-H3), 6.47
3
C-Ar), 140.28 (Cq, C-Ar), 142.82 (+, C4-Py), 151.46 (Cq, C6-Py),
158.96 (Cq, C2-Py), 201.68 (Cq, COCH3) ppm. IR [DRIFT (dif-
fused reflectance infrared Fourier transform-spectroscopy)]: ν =
(dd, 3J = 7.9, 4J = 1.7 Hz, 1 H, Ar-H), 6.51 (dd, 3J = 7.9, 4J =
1.7 Hz, 1 H, Ar-H), 6.64 (dd, 3J = 7.8, 3J = 1.7 Hz, 1 H, Ar-H),
4
3
6.71 (d, J = 1.9 Hz, 1 H, pyrazole-H), 6.86 (d, J = 7.7 Hz, 1 H,
˜
3
3352 (vw), 3035 (w), 3010 (w), 2965 (m), 2933 (m), 2855 (w), 2362 Py-H4), 7.70 (d, J = 1.9 Hz, 1 H, pyrazole-H), 11.20 (br. s, 1 H,
(vw), 1891 (vw), 1685 (s) [C=O], 1596 (w), 1567 (m), 1540 (m), NH) ppm. 13C NMR (100 MHz, CDCl3): δ = 33.83 (–, CH2), 34.25
1504 (w), 1452 (m), 1435 (w), 1413 (m), 1384 (w), 1352 (m), 1327
(w), 1287 (m), 1224 (w), 1180 (w), 1160 (w), 1128 (w), 1072 (m),
(–, CH2), 34.34 (–, CH2), 36.85 (–, CH2), 105.20 (+, pyrazole-C4),
123.11 (+, C3-Py), 129.43 (Cq, C5-Py), 129.68 (+, C-Ar), 132.02
1014 (w), 948 (m), 926 (w), 898 (w), 863 (w), 826 (w), 797 (m), 750 (+, pyrazole-C5), 132.09 (+, 2 C-Ar), 133.13 (+, C-Ar), 138.51 (Cq,
(w), 723 (m), 687 (vw), 662 (w), 613 (m), 600 (m), 558 (w), 520 (m), C-Ar), 139.41 (Cq, C-Ar), 140.01 (Cq, pyrazole-C3), 142.58 (+, C4-
442 (w), 424 (vw) cm–1. MS (70 eV, EI): m/z (%) = 251 (100) [M]+,
250 (43) [M – H]+, 222 (5) [M – C2H5]+, 208 (7) [M – COCH3]+,
182 (7) [M – C3H3NO]+, 180 (5) [M – C3H5NO]+, 147 (34) [M –
Py), 147.18 (C , C6-Py), 158.93 (C , C2-Py) ppm. IR (ATR): ν =
˜
q q
3122 (w), 3017 (w), 2928 (w), 2890 (w), 1722 (w), 1598 (w), 1557
(w), 1532 (w), 1487 (w), 1450 (w), 1429 (w), 1412 (w), 1385 (w),
C8H10]+, 105 (19) [C7H7N]+, 104 (79) [C8H8]+, 103 (22) [C8H7]+, 78 1341 (w), 1238 (w), 1194 (w), 1173 (w), 1145 (w), 1087 (w), 1064
(23) [C5H4N]+, 77 (12) [C5H3N]+, 43 (26) [COCH3]+. HRMS:
calcd. for C17H17NO 251.1312; found 251.1310.
(w), 1035 (w), 986 (w), 958 (w), 933 (w), 921 (w), 895 (w), 844 (w),
826 (w), 792 (w), 772 (m), 755 (m), 717 (m), 674 (w), 650 (w), 618
(m), 594 (w), 548 (w), 522 (m), 489 (w) cm–1. MS (70 eV, EI): m/z
(%) = 275 (60) [M]+, 274 (13) [M – H]+, 171 (21) [M – C8H8]+, 153
(11), 104 (31) [C8H8]+, 89 (12), 77 (21) [C5H3N]+, 58 (25), 43 (100)
[NC2H5]+. HRMS: calcd. for C18H17N3 275.1422; found 275.1425.
rac-13-(3-Dimethylamino-2-propene-1-on-1-yl)[2](1,4)benzeno[2]-
(2,5)pyridinophane (19): Into a vial, rac-13-acetyl[2](1,4)benzene-
[2](2,5)pyridinophane (18, 135 mg, 0.537 mmol, 1.00 equiv.) was
dissolved in N,N-dimethylformamide dimethyl acetal (0.714 mL,
0.640 mg, 5.37 mmol, 10.0 equiv.), and the resulting mixture was
stirred at 130 °C for 15 h. After the DMFDMA was removed under
reduced pressure, the crude product was purified by column
chromatography (CH2Cl2/MeOH, 30:1) to yield aminopropenone
19 (153 mg, 0.499 mmol, 93%) as a yellow solid. Rf = 0.33
(CH2Cl2/MeOH, 30:1); m.p. 189 °C. 1H NMR (400 MHz, CDCl3):
δ = 2.75–3.31 [m, 13 H, HPyp, N(CH3)2], 3.99–4.04 (m, 1 H, HPyp),
5.96 (d, 3J = 11.6 Hz, 1 H, COCHCHNMe2), 6.44 (d, 3J = 7.6 Hz,
1 H, Py-H3), 6.45–6.49 (m, 2 H, Ar-H), 6.63 (dd, 3J = 7.9, 4J =
1.4 Hz, 1 H, Ar-H), 6.72 (dd, 3J = 7.9, 4J = 1.4 Hz, 1 H, Ar-H),
6.79 (d, 3J = 7.6 Hz, 1 H, Py-H4), 7.69 (d, 3J = 11.6 Hz, 1 H,
COCHCHNMe2) ppm. 13C NMR (100 MHz, CDCl3): δ = 34.00
(–, CH2), 34.37 (–, CH2), 34.94 (–, CH2), 37.03 (–, CH2), 37.23 (+,
NCH3), 44.88 (+, NCH3), 93.98 (+, COCHCHNMe2), 124.63 (+,
C3-Py), 131.12 (+, C-Ar), 131.48 (+, C-Ar), 132.45 (+, C-Ar),
133.04 (+, C-Ar), 133.10 (Cq, C5-Py), 138.23 (Cq, C-Ar), 140.38
(Cq, C-Ar), 142.43 (+, C4-Py), 153.78 (+, COCHCHNMe2), 154.29
(Cq, C6-Py), 158.19 (Cq, C2-Py), 189.46 (Cq, CO) ppm. IR (ATR):
rac-13-(2-Aminopyrimidin-4-yl)[2](1,4)benzeno[2](2,5)pyridinophane
(21): Into a vial, a solution of guanidine nitrate (50.1 mg,
0.411 mmol, 1.25 equiv.) in dry ethanol (3 mL) was added to a
warm solution of rac-13-(3-dimethylamino-2-propene-1-on-1-
yl)[2](1,4)benzene[2](2,5)pyridinophane (19, 100 mg, 0.329 mmol,
1.00 equiv.) in ethanol (2 mL), and the reaction mixture was heated
at reflux for 1 h. A solution of sodium ethoxide [Na (15.1 mg) in
EtOH (2 mL), 0.657 mmol, 2.00 equiv.) was added, and the reac-
tion mixture was heated at reflux for 24 h. The solvent was removed
under reduced pressure. The residue was dissolved in CH2Cl2
(20 mL), and H2O (10 mL) was added. The organic phase was sep-
arated, and the aqueous phase was extracted with CH2Cl2
(3ϫ10 mL). The combined organic phases were dried with MgSO4,
and the solvent was removed under reduced pressure to yield pyr-
imidine 21 (96.3 mg, 0.318 mmol, 97%) as a colorless solid without
further purification. Rf = 0.35 (CH2Cl2/MeOH, 30:1); m.p. 217 °C.
1H NMR (400 MHz, CDCl3): δ = 2.86–2.95 (m, 2 H, HPyp), 3.00–
3.06 (m, 2 H, HPyp), 3.24–3.29 (m, 3 H, HPyp), 4.05–4.12 (m, 1 H,
HPyp), 5.30 (br. s, 2 H, NH2), 6.47–6.51 (m, 3 H, Ar-H and Py-
H3), 6.54 (dd, 3J = 7.8, 4J = 1.4 Hz, 1 H, Ar-H), 6.70 (dd, 3J =
7.8, 4J = 1.4 Hz, 1 H, Ar-H), 6.91 (d, 3J = 7.6 Hz, 1 H, Py-H4),
7.47 (d, 3J = 5.1 Hz, 1 H, pyrimidine-H), 8.50 (d, 3J = 5.1 Hz, 1
H, pyrimidine-H) ppm. 13C NMR (100 MHz, CDCl3): δ = 33.78
(–, CH2), 34.37 (–, CH2), 34.82 (–, CH2), 37.01 (–, CH2), 110.72
(+, pyrimidine-C5), 124.39 (+, C3-Py), 129.96 (+, C-Ar), 131.90
(+, C-Ar), 132.22 (+, C-Ar), 132.79 (Cq, C5-Py), 133.08 (+, C-Ar),
138.53 (Cq, C-Ar), 139.92 (Cq, C-Ar), 142.92 (+, C4-Py), 153.47
(Cq, pyrimidine-C2), 158.74 (Cq, pyrimidine-C4), 159.08 (+, pyrim-
idine-C6), 162.74 (Cq, C5-Py), 166.37 (Cq, C2-Py) ppm. IR (ATR):
ν = 2922 (vw), 1639 (w), 1554 (m) [C=O], 1488 (w), 1445 (w), 1419
˜
(w), 1381 (w), 1347 (w), 1278 (w), 1252 (w), 1148 (vw), 1127 (vw),
1106 (w), 1035 (w), 996 (w), 970 (vw), 937 (w), 893 (w), 861 (vw),
814 (vw), 791 (w), 771 (w), 719 (w), 671 (vw), 654 (w), 635 (w), 585
(vw), 524 (w), 464 (vw) cm–1. MS (70 eV, EI): m/z (%) = 306 (62)
[M]+, 305 (8) [M – H]+, 263 (20) [M – NC2H5]+, 262 (13) [M –
NC2H6]+, 203 (14) [M – C8H7]+, 202 (100) [M – C8H8]+, 201 (13)
[M – C8H9]+, 159 (21) [M – C8H8 – NC2H5]+, 158 (7) [M – C8H8
– NC2H6]+, 131 (10) [C10H11]+, 130 (9) [C10H10]+, 107 (22)
[C8H11]+, 106 (12) [C8H10]+, 105 (23) [C7H7N]+, 104 (31) [C8H8]+,
103 (18) [C8H7]+, 98 (71) [C5H8NO]+, 89 (19), 79 (11) [C5H5N]+,
78 (22) [C5H4N]+, 77 (54) [C5H3N]+, 69 (19) [NC4H7]+, 57 (20)
[NC3H7]+, 43 (65) [NC2H5]+. HRMS: calcd. for C20H22N2O
306.1732; found 306.1734.
ν = 3311 (w), 3162 (w), 2958 (vw), 2922 (w), 2850 (vw), 1646 (w),
˜
1566 (w), 1540 (w), 1477 (w), 1443 (w), 1341 (w), 1229 (w), 1142
(w), 1072 (w), 1003 (vw), 973 (vw), 950 (vw), 928 (vw), 894 (vw),
852 (vw), 826 (w), 813 (w), 795 (w), 763 (vw), 717 (w), 701 (w), 645
(w), 634 (w), 592 (w), 575 (w), 520 (w), 469 (w), 434 (w) cm–1. MS
(70 eV, EI): m/z (%) = 302 (46) [M]+, 199 (12) [M – C8H7]+, 198
(100) [M – C8H8]+, 197 (29) [M – C8H9]+, 77 (12) [C4H1N2]+, 69
(11) [C2H3N3]+, 59 (12) [N2C2H7]+, 58 (23) [N2C2H6]+, 57 (11)
[N2C2H5]+, 43 (63) [NC2H5]+. HRMS: calcd. for C18H17N3
302.1531; found 302.1531.
rac-13-(Pyrazol-3-yl)[2](1,4)benzeno[2](2,5)pyridinophane (20): Into
a
vial, hydrazine hydrate (0.143 mL, 147 mg, 2.94 mmol,
10.0 equiv.) was added to a solution of rac-13-(3-dimethylamino-
2-propene-1-on-1-yl)[2](1,4)benzene-[2](2,5)pyridinophane (19,
90.0 mg, 0.294 mmol, 1.00 equiv.) in EtOH (10 mL), and the reac-
tion mixture was heated at reflux for 14 h. The solvent was removed
under reduced pressure, and the crude product was purified by col-
Eur. J. Org. Chem. 2013, 541–549
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
547