ChemComm
Page 4 of 4
COMMUNICATION
ChemComm
formation of DODH products.
DOI: 10.1039/C9CC05413H
This work was supported by the National Key R&D program
of China (No. 2018YFB1501602), National Natural Science
Foundation of China (Nos. 21690082, 91545203 and
21473141) and the Fundamental Research Funds for the
Central Universities (No. 20720160029).
Conflicts of interest
Fig. 2 FT-IR spectra at 363 K. (A) Systems composed of dibutyl tartrate and CH3ReO3
with different concentrations in butanol. CH3ReO3 concentration (mmol/L): a, 0; b, 4; c,
8; d, 16; e, 24; f and g, 32. Dibutyl tartrate concentration (mmol/L): a-f, 200; g, 0. (B)
Systems composed of CH3ReO3 (concentration, 32 mmol/L) and different diols
(concentration, 200 mmol/L) in butanol.
There are no conflicts to declare.
Notes and references
Further FT-IR studies for systems composed of CH3ReO3 and
other diols demonstrated that the functional groups in the
diols influenced the IR bands ascribed to the symmetric Re=O
stretching vibration (Fig. 2B). As compared to the electron-
withdrawing groups (e.g., –COOBu in tartrate), the electron-
donating groups such as –CH3 in pinacol and −CH2OCH2– in 1,4-
anhydroerythritol caused the shift of IR band to a lower
wavenumber. This provides further evidence for the formation
of Re-diolate complex in these systems. When the
temperature rose to 393 K, these IR bands disappeared, and
the corresponding alkenes were formed (Fig. S7, ESI†).
Take the DODH of D-glucaric acid-1,4-lactone to product 1 as
an example, we propose a functioning mechanism of Re
species in Scheme 4. As mentioned in Scheme 3, D-glucaric
acid-1,4-lactone is transformed to a cis-diol via esterification
equilibrium in butanol under reaction conditions, and then the
Re species is coordinated by the two vicinal OH groups,
forming a Re-diolate complex. Upon reduction by butanol, the
Re-diolate complex is transformed into an alkene and the Re
catalyst is recovered.
In conclusion, we have discovered that ReOx/ZrO2 is an
efficient catalyst for the deoxydehydration of D-glucaric acid-
1,4-lactone in butanol. The catalyst offers dibutyl hexa-2,4-
dienedioate with a yield of 41% and the total yield of esters
containing alkenyl groups was 93%. The product mixture can
be further converted to butyl adipate with a yield of 82% in the
subsequent hydrogenation reaction in combination with a
Pd/C catalyst. The higher reducibility of ReOx species due to
weaker interactions on ZrO2 is favourable for the removal of
OH groups and the redox of ReOx species may participate in
the deoxydehydration. Re species is believed to be
coordinated by the vicinal OH groups in cis-diol structure,
forming a Re-diolate complex, a key intermediate for the
1
(a) S. Li, W. Deng, S. Wang, P. Wang, D. An, Y. Li, Q. Zhang
and Y. Wang, ChemSusChem, 2018, 11, 1995-2028; (b) M.
Wang, J. Ma, H. Liu, N. Luo, Z. Zhao and F. Wang, ACS Catal.,
2018, 8, 2129-2165.
2
3
(a) X. Tan, W. Deng, M. Liu, Q. Zhang and Y. Wang, Chem.
Commun., 2009, 7179-7181; (b) D. An, A. Ye, W. Deng, Q.
Zhang and Y. Wang, Chem. Eur. J., 2012, 18, 2938-2947.
(a) M. Dusselier, P. V. Wouwe, A. Dewaele, E. Mkaterina and
B. F. Sels, Energy Environ. Sci., 2013, 6, 1415-1442; (b) Y.
Wang, W. Deng, B. Wang, Q. Zhang, X. Wan, Z. Tan, Y. Wang,
C. Zhu, G. Wang and H. Wan, Nat. Commun., 2013, 4, 2141.
S. Van de Vyver and Y. Román-Leshkov, Catal. Sci. Technol.,
2013, 3, 1465-1479.
J. C. J. Bart and S. Cavallaro, Ind. Eng. Chem. Res., 2015, 54,
567-576.
L. Wei, J. Zhang, W. Deng, S. Xie, Q. Zhang and Y. Wang,
Chem. Commun. 2019, 55, 8013-8016.
4
5
6
7
(a) J. Lee, B. Saha and D. G. Vlachos, Green Chem., 2016, 18,
3815-3822; (b) E. Derrien, P. Marion, C. Pinel and M. Besson,
Org. Process Res. Dev., 2016, 20, 1265-1275.
8
9
(a) Y. Nakagawa, M. Tamura and K. Tomishige, J. Mater.
Chem. A, 2014, 2, 6688-6702; (b) T. Wang, M. W. Nolte and
B. H. Shanks, Green Chem., 2014, 16, 548-572.
T. R. Boussie, E. L. Dias, Z. M. Fresco, V. J. Murphy, J.
Shoemaker, R. Archer and H. Jiang, US8669397B2, 2014.
10 (a) E. V. Makshina, M. Dusselier, W. Janssens, J. Degrève, P.
A. Jacobes and B. F. Sels, Chem. Soc. Rev., 2014, 43, 7917-
7953; (b) S. Raju, M. E. Moret and R. J. Klein Gebbink, ACS
Catal., 2015, 5, 281-300; (c) J. R. Dethlefsen and P. Fristrup,
ChemSusChem, 2015, 8, 767-775; (d) A. R. Petersen and P.
Fristrup, Chem. Eur. J., 2017, 23, 10235-10243; (e) C. Li, Q.
Zhang and Y. Fu, Acta Chim. Sinica, 2018, 76, 501-514.
11 (a) M. Shiramizu and F. D. Toste, Angew. Chem. Int. Ed.,
2013, 52, 12905-12909; (b) X. Li, D. Wu, T. Lu, G. Yi, H. Su and
Y. Zhang, Angew. Chem. Int. Ed., 2014, 53, 4200-4204.
12 (a) N. Ota, M. Tamura, Y. Nakagawa, K. Okumura and K.
Tomishige, Angew. Chem. Int. Ed., 2015, 54, 1897-1900; (b) L.
Sandbrink, E. Klindtworth, H. U. Islam, A. M. Beale and R.
Palkovits, ACS Catal., 2016, 6, 677-680.
13 R. T. Larson, A. Samant, J. Chen, W. Lee, M. A. Bohn, D. M.
Ohlmann, S. J. Zuend and F. D. Toste, J. Am. Chem. Soc., 2017,
139, 14001-14004.
14 M. A. Vuurman, D. J. Stufkens, A. Oskam, J. Mol. Catal. 1992,
76, 263-285.
15 R. Dethlefsen and P. Fristrup, ChemCatChem, 2015, 7, 1184-
1196.
Scheme 4 A proposed reaction mechanism for Re-catalysed DODH reaction.
4 |Chem. Commun., 2019, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx