Journal of the American Chemical Society
Page 12 of 14
Do Silanes Reduce Electron-Rich Phosphine Oxides Faster than
Electron-Poor Phosphine Oxides? Chem. Commun. 2020, 56, 1227.
3
0
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
For analogous calculations using a PCM model for solvation in n-butyl
acetate (ε = 4.9941), see reference 15c.
44
(a) Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine
3
3
1
2
N. Ono, The Nitro Group in Organic Synthesis. Wiley, New York, 2001.
Organocatalysis. Chem. Rev. 2018, 118, 10049. (b) Lao, Z.; Toy, P. H.
Catalytic Wittig and aza-Wittig Reactions. Beilstein J. Org. Chem. 2016,
Srivastava, R. S.; Nicholas, K. M. Kinetics of the Allylic Amination of
1
2, 2577.
Olefins by Nitroarenes Catalyzed by [CpFe(CO)
005, 24, 1563.
2 2
] . Organometallics
45
V
2
For reviews discussing P =O catalysis, see: (a) Marsden, S. P. Catalytic
Variants of Phosphine Oxide-Mediated Organic Transformations. In
Sustainable Catalysis; Dunn, P. J., Hii, K. K., Krische, M. J., Williams,
M. T., Eds.; John Wiley & Sons, Inc.: New York, 2013; pp 339−361. (b)
Denmark, S. E.; Stavenger, R. A. Asymmetric Catalysis of Aldol
Reactions with Chiral Lewis Bases. Acc. Chem. Res. 2000, 33, 432. (c)
Denmark, S. E.; Beutner, G. L. Lewis Base Catalysis in Organic
Synthesis. Angew. Chem., Int. Ed. 2008, 47, 1560. (d) Benaglia, M.;
Rossi, S. Chiral Phosphine Oxides in Present-Day Organocatalysis. Org.
Biomol. Chem. 2010, 8, 3824.
33
Gui, J.; Pan, C.-M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.;
Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.; Darvatkar,
N.; Natarajan, S. R.; Baran, P. S. Practical olefin hydroamination with
nitroarenes. Science 2015, 348, 886.
3
4
Zhu, K.; Shaver, M. P.; Thomas, S. P. Chemoselective Nitro Reduction
and Hydroamination Using a Single Iron Catalyst. Chem. Sci. 2016, 7,
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
3
031.
a) Cheung, C. W.; Hu, X. Amine Synthesis via Iron-Catalysed
Reductive Coupling of Nitroarenes with Alkyl Halides. Nat. Commun.
016, 7, 12494. (b) Cheung, C. W.; Ploeger, M. L.; Hu, X. Direct
35
(
46
(a) Denton, R. M.; An, J.; Adeniran, B. Phosphine Oxide-Catalysed
2
Chlorination Reactions of Alcohols Under Appel Conditions. Chem.
Commun. 2010, 46, 3025. (b) Denton, R. M.; Tang, X.; Przeslak, A.
Catalysis of Phosphorus(V)-Mediated Transformations: Dichlorination
Reactions of Epoxides Under Appel Conditions. Org. Lett. 2010, 12,
4678. (c) Denton, R. M.; An, J.; Adeniran, B.; Blake, A. J.; Lewis, W.;
Poulton, A. M. Catalytic Phosphorus(V)-Mediated Nucleophilic
Substitution Reactions: Development of a Catalytic Appel Reaction. J.
Org. Chem. 2011, 76, 6749. (d) An, J.; Tang, X.; Moore, J.; Lewis, W.;
Denton, R. M. Phosphorus(V)-Catalyzed Deoxydichlorination Reactions
of Aldehydes. Tetrahedron 2013, 69, 8769. (e) Yu, T.-Y.; Wang, Y.; Xu,
P.-F. An Unusual Triphenylphosphine Oxide Catalyzed Stereoselective
1,3-Dichlorination of Unsaturated Ketoesters. Chem. Eur. J. 2014, 20,
98. (f) Tang, X.; An, J.; Denton, R. M. A Procedure for Appel
Amidation of Esters with Nitroarenes. Nat. Commun. 2017, 8, 14878. (c)
Cheung, C. W.; Hu, X. Nickel-Catalyzed Reductive Transamidation of
Secondary Amides with Nitroarenes. ACS Catal. 2017, 7, 7092.
3
6
(a) Sapountzis, I.; Knochel, P. A New General Preparation of
Polyfunctional Diarylamines by the Addition of Functionalized
Arylmagnesium Compounds to Nitroarenes. J. Am. Chem.
Soc. 2002, 124, 9390. (b) Doyle, W.; Staubitz, A.; Knochel, P. Mild
Synthesis of Polyfunctional Benzimidazoles and Indoles by the
Reduction of Functionalized Nitroarenes with Phenylmagnesium
Chloride. Chem. Eur. J. 2003, 9, 5323. (c) Kopp, F.; Sapountzis, I.;
Knochel, P. Preparation of Polyfunctionalized Amines by the Addition
of Functionalized Organomagnesium Reagents to Nitrosoarenes Synlett,
2003, 885. (d) Sapountzis, I.; Knochel, P. A New Method for the
Selective Amination of 1,3- and 1,4-Dinitrobenzenes and Protected
Nitroanilines Leading to Polyfunctional 1,3- and 1,4- Disubstituted
Anilines. Synlett 2004, 955. (e) Dhayalan, V.; Saemann, C.; Knochel, P.
Synthesis of polyfunctional secondary amines by the addition of
functionalized zinc reagents to nitrosoarenes. Chem. Commun. 2015, 51,
Halogenations and Dehydrations Using
a Polystyrene Supported
Phosphine Oxide. Tetrahedron Lett. 2014, 55, 799. (g) Buonomo, J. A.;
Aldrich, C. C. Mitsunobu Reactions Catalytic in Phosphine and a Fully
Catalytic System. Angew. Chem., Int. Ed. 2015, 54, 13041. (h) Hirose,
D.; Gazvoda, M.; Košmrlj, J.; Taniguchi, T. The “Fully Catalytic
System” in Mitsunobu Reaction Has Not Been Realized Yet. Org. Lett.
2016, 18, 4036. (i) Jiang, L.; Yu, J.; Niu, F.; Zhang, D.; Sun, X. A High-
Efficient Method for the Amidation of Carboxylic Acids Promoted by
Triphenylphosphine Oxide and Oxalyl Chloride. Heteroat. Chem. 2017,
3
239.
3
3
7
8
Gao, H.; Xu, Q.-L.; Ess, D. H.; Kürti, L. Transition-Metal-Free, Low-
Temperature Intramolecular Amination of Aromatic C-H Bonds: Rapid
Synthesis of Fused Heterocycles.” Angew. Chem., Int. Ed. 2014, 53,
2
8, e21364. (j) Beddoe, R. H.; Sneddon, H. F.; Denton, R. M. The
Catalytic Mitsunobu Reaction: A Critical Analysis of the Current State-
of-the-Art. Org. Biomol. Chem. 2018, 16, 7774. (k) Beddoe, R. H.;
Andrews, K. G.; Magné, V.; Cuthbertson, J. D.; Saska, J.; Shannon-
Little, A. L.; Shanahan, S. E.; Sneddon, H. F.; Denton, R. M. Redox-
Neutral Organocatalytic Mitsunobu Reactions. Science 2019, 365, 910.
2
701.
(a) Rauser, M.; Ascheberg, C.; Niggemann, M. Electrophilic Amination
with Nitroarenes. Angew. Chem., Int. Ed. 2017, 56, 11570. (b) Rauser,
M.; Ascheberg, C.; Niggemann, M. Direct Reductive N-
Functionalization of Aliphatic Nitro Compounds. Chem. - A Eur. J.
4
4
7
8
Harris, J. R.; Haynes, M. T., II; Thomas, A. M.; Woerpel, K. A.
Phosphine-catalyzed reductions of alkyl silyl peroxides by titanium
hydride reducing agents: Development of the method and mechanistic
investigations. J. Org. Chem. 2010, 75, 5083.
2
2018, 24, 3970. (c) Rauser, M.; Warzecha, D. P.; Niggemann, M. O -
Mediated Oxidation of Aminoboranes through 1,2-N Migration. Angew.
Chem., Int. Ed. 2018, 57, 5903. (d) Rauser, M.; Eckert, R.;
Gerbershagen, M.; Niggemann, M. Catalyst-Free Reductive Coupling of
Aromatic and Aliphatic Nitro Compounds with Organohalides. Angew.
Chem., Int. Ed. 2019, 58, 6713.
(a) van Kalkeren, H. A.; van Delft, F. L.; Rutjes, F. P. J. T.
Organophosphorus catalysis to bypass phosphine oxide waste.
ChemSusChem 2013, 6, 1615. (b) van Kalkeren, H. A.; Blom, A. L.;
Rutjes, F. P. J. T.; Huijbregts, M. A. J. On the usefulness of life cycle
assessment in early chemical methodology development: The case of
organophosphorus-catalyzed Appel and Wittig reactions. Green Chem.
3
9
3
Nykaza, T. V.; Yang, J.; Radosevich, A. T. PEt -Mediated
Deoxygenative C–N Coupling of Nitroarenes and Boronic Acids.
Tetrahedron 2019, 75, 3248.
40
Roscales, S.; Csáky, A. G. Transition-Metal-Free Three-Component
Synthesis of Tertiary Aryl Amines from Nitro Compounds, Boronic
Acids, and Trialkyl Phosphites. Adv. Synth. Catal. 2020, 362, 111.
2
013, 15, 1255. (c) van Kalkeren, H. A.; Leenders, S. H.; Hommersom,
C. R.; Rutjes, F. P.; van Delft, F. L. In situ phosphine oxide reduction: A
catalytic Appel reaction. Chem. - Eur. J. 2011, 17, 11290. (d) van
Kalkeren, H. A.; van Delft, F. L.; Rutjes, F. P. J. T. Catalytic Appel
reactions. Pure Appl. Chem. 2013, 85, 817. (e) van Kalkeren, H. A.;
Bruins, J. J.; Rutjes, F. P. J. T.; van Delft, F. L. Organophosphorus-
catalysed Staudinger reduction. Adv. Synth. Catal. 2012, 354, 1417. (f)
van Kalkeren, H. A.; te Grotenhuis, C.; Haasjes, F. S.; Hommersom, C.
R. A.; Rutjes, F. P. J. T.; van Delft, F. L. Catalytic Staudinger/aza-Wittig
sequence by in situ phosphane oxide. Eur. J. Org. Chem. 2013, 2013,
4
1
Suárez-Pantiga, S.; Hernández-Ruiz, R.; Virumbrales, C.; Pedrosa, M.
R.; Sanz, R. Reductive Molybdenum-Catalyzed Direct Amination of
Boronic Acids with Nitro Compounds. Angew. Chem., Int. Ed. 2019, 58,
2
129.
42
O’Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.;
Kunkel, S. R.; Przeworski, K. C.; Chass, G. A. Recycling the Waste: The
Development of a Catalytic Wittig Reaction. Angew. Chem., Int. Ed.
7
059. (g) Lenstra, D. C.; Rutjes, F. P.; Mecinoviꢀ, J. Triphenylphosphine
2
009, 48, 6836.
catalysed amide bond formation between carboxylic acids and amines.
Chem. Commun. 2014, 50, 5763.
4
3
(a) O’Brien, C. J.; Lavigne, F.; Coyle, E. E.; Holohan, A. J.; Doonan, B.
J. Breaking the ring through a room temperature catalytic Wittig
reaction. Chem. - Eur. J. 2013, 19, 5854. (b) O’Brien, C. J.; Nixon, Z.
S.; Holohan, A. J.; Kunkel, S. R.; Tellez, J. L.; Doonan, B. J.; Coyle, E.
E.; Lavigne, F.; Kang, L. J.; Przeworski, K. C. The development of the
catalytic Wittig reaction. Chem. - Eur. J. 2013, 19, 15281. (c) Coyle, E.
E.; Doonan, B. J.; Holohan, A. J.; Walsh, K. A.; Lavigne, F.; Krenske,
E. H.; O’Brien, C. J. Catalytic Wittig reactions of semi−and
nonstabilized ylides enabled by ylide tuning. Angew. Chem., Int. Ed.
49
(a) Werner, T. Phosphonium salt organocatalysis. Adv. Synth. Catal.
2
009, 351, 1469. (b) Werner, T.; Hoffmann, M.; Deshmukh, S. First
enantioselective catalytic Wittig reaction. Eur. J. Org. Chem. 2014,
2014, 6630. (c) Werner, T.; Hoffmann, M.; Deshmukh, S. First
microwaveassisted catalytic Wittig reaction. Eur. J. Org. Chem. 2014,
2
014, 6873. (d) Hoffmann, M.; Deshmukh, S.; Werner, T. Scope and
limitation of the microwave-assisted catalytic Wittig reaction. Eur. J.
2
014, 53, 12907. (d) Kirk, A. M.; O’Brien, C. J.; Krenske, E. H. Why
ACS Paragon Plus Environment
1
2