Organic Letters
Letter
Notes
MS assay (Scheme 1, Figures S18−S20). We measured the
amount of 1 in culture extracts of ClbP-expressing E. coli strains
The authors declare no competing financial interest.
Scheme 1. Metabolite B is Processed by Peptidase ClbP
ACKNOWLEDGMENTS
■
We thank Gregory Heffron (Harvard Medical School, Boston,
MA) for assistance with NMR experiments, Sunia Trauger
(Small Molecule Mass Spectrometry Facility, Harvard Univer-
sity, Cambridge, MA) for help with LC−MS analyses, and Li Zha
(Department of Chemistry and Chemical Biology, Harvard
University, Cambridge, MA) and Pedro Leao (Center for Marine
̃
and Environmental Research, University of Porto, Porto,
Portugal) for helpful discussions. We acknowledge financial
support from the Damon Runyon-Rachleff Innovation Award,
the Smith Family Award for Excellence in Biomedical Research,
and the Packard Fellowship for Science and Engineering.
incubated with 3, known ClbP substrate N-myristoyl-D-
asparagine-L-alanine-O-methyl ester,4 or DMSO. E. coli express-
ing full-length ClbP-C-His6 hydrolyzed both 3 and the control
substrate. In assays with 3, we did not identify masses
corresponding to the accumulation of primary amine 8 or
imine 9. Instead we observed a product 10 that had a mass
consistent with a chloride adduct (m/z 241.1108). Neither 1 nor
10 was found in assays with cells expressing the inactive mutant
ClbP-S95A-C-His6 or an empty vector. The ability of ClbP to
process Metabolite B supports the hypothesis that this
spirocyclic ring system is present in precolibactin and/or other
ClbP substrates produced by pks+ E. coli.
Our results raise important questions about the role of ClbP in
generating active genotoxin and the mechanism by which
colibactin production leads to DNA damage. We postulate that
prodrug cleavage could enhance the activity of 3 and related pks
metabolites in two ways: by releasing metabolites from the E. coli
membrane through removal of the lipophilic N-acyl chain and by
generating a more potent electrophile, an α,β-unsaturated
iminium with an adjacent cyclopropyl group, that could alkylate
DNA or a target protein.10 Intriguingly, this activation strategy
bears resemblance to, but is unique from, those involved in
modulating the activities of other DNA-alkylating natural
products that contain cyclopropanes,11 including the CC-
1065/duocarmycins12 (conformational change upon DNA
binding) and the illudins/acylfulvenes13 (activation via reductive
metabolism). Based on this precedent, we have tentatively
proposed a cyclopropane-opened structure for 10.
REFERENCES
■
(1) (a) Nougayred
̀
e, J. P.; Homburg, S.; Taieb, F.; Boury, M.;
Brzuszkiewicz, E.; Gottschalk, G.; Buchrieser, C.; Hacker, J.; Dobrindt,
U.; Oswald, E. Science 2006, 313, 848. (b) Cuevas-Ramos, G.; Petit, C.
R.; Marcq, I.; Boury, M.; Oswald, E.; Nougayred
Sci. U.S.A. 2010, 107, 11537.
̀
e, J. P. Proc. Natl. Acad.
(2) Arthur, J. C.; Perez-Chanona, E.; Muhlbauer, M.; Tomkovich, S.;
̈
Uronis, J. M.; Fan, T. J.; Campbell, B. J.; Abujamel, T.; Dogan, B.;
Rogers, A. B.; Rhodes, J. M.; Stintzi, A.; Simpson, K. W.; Hansen, J. J.;
Keku, T. O.; Fodor, A. A.; Jobin, C. Science 2012, 338, 120.
(3) (a) Bondarev, V.; Richter, M.; Romano, S. Environ. Microbiol. 2013,
15, 2095−2113. (b) Engel, P.; Vizcaino, M. I.; Crawford, J. M. Appl.
Environ. Microbiol. 2015, 81, 1502.
(4) Brotherton, C. A.; Balskus, E. P. J. Am. Chem. Soc. 2013, 135, 3359.
(5) (a) Bian, X.; Fu, J.; Plaza, A.; Herrmann, J.; Pistorius, D.; Stewart, A.
F.; Zhang, Y.; Muller, R. ChemBioChem 2013, 14, 1194. (b) Vizcaino, M.
̈
I.; Engel, P.; Trautman, E.; Crawford, J. M. J. Am. Chem. Soc. 2014, 136,
9244.
(6) Tautenhahn, R.; Patti, G. J.; Rinehart, D.; Siuzdak, G. Anal. Chem.
2012, 84, 5035.
(7) Krumbholz, G. Ph.D. Thesis, Julius-Maximilians-Universitat
̈
Wurzburg, 2010.
̈
(8) Kato, T.; Sato, M.; Yoshida, T. Chem. Pharm. Bull. 1971, 19, 292.
(9) Thibodeaux, C. J.; Chen, W.; Liu, H. Chem. Rev. 2012, 112, 1681.
(10) (a) Wong, H. N. C.; Hon, M.; Tse, C.; Yip, Y.; Tanko, J.;
Hudlicky, T. Chem. Rev. 1989, 89, 165. (b) Bose, G.; Bracht, K.;
Bednarski, P. J.; Lalk, M.; Langer, P. Bioorg. Med. Chem. 2006, 14, 4694.
(11) (a) Wolkenberg, S. E.; Boger, D. L. Chem. Rev. 2002, 102, 2477.
(b) Gersch, M.; Kreuzer, J.; Sieber, S. A. Nat. Prod. Rep. 2012, 29, 659.
(12) (a) Gosh, N.; Sheldrake, H. M.; Searcey, M.; Pors, K. Curr. Top.
Med. Chem. 2009, 9, 1494. (b) Boger, D. L.; Garbaccio, R. M. Acc. Chem.
Res. 1999, 32, 1043. (c) Boger, D. L.; Johnson, D. S. Proc. Natl. Acad. Sci.
U.S.A. 1995, 92, 3642.
In conclusion, we have successfully isolated a complex
metabolite associated with the pks island that will guide further
studies of colibactin biosynthesis and biological activity. The
structure of Metabolite B raises intriguing questions about how
the azaspiro[2.4] bicyclic ring system is biosynthesized by the pks
assembly line enzymes and how this structure may contribute to
colibactin’s genotoxicity. Beyond its impact in the area of natural
product discovery, this work will aid future efforts to understand
how pks+ E. coli impact human health and disease.
(13) Tanasova, M.; Sturla, S. Chem. Rev. 2012, 112, 3578.
ASSOCIATED CONTENT
* Supporting Information
■
S
1
Full experimental and characterization data, including H and
13C NMR for all new compounds. This material is available free
AUTHOR INFORMATION
Corresponding Author
■
1548
Org. Lett. 2015, 17, 1545−1548