Communication
ChemComm
D. Zhao, R. Krishna and H.-C. Zhou, J. Am. Chem. Soc., 2011, 133,
18126–18129; (d) M. H. Weston, O. K. Farha, B. G. Hauser, J. T. Hupp
and S. T. Nguyen, Chem. Mater., 2012, 24, 1292–1296.
resolved by this CSP (Fig. S9, ESI†). Despite the moderate
stereoselectivity, 1 represent a new generation of robust porous
materials that are capable of chiral separation of racemates.
Chiral separation has been reported for MOFs6d,13,14 and supra-
molecular metal–organic and organic assemblies.15 Porous
organic materials, however, might have specific advantages
given their scalability and chemical stability and hold great
potential for analytical chiral separations and even preparative
separations. Further study on enantioseparation with chiral
organic frameworks is in progress.
To better understand the GC column separation process, we
obtained the Van’t Hoff plot of 1-phenylethanol by changing the
column separation temperature (Fig. S11, ESI†).16,17 According to
the Van’t Hoff equation, we calculated the molar adsorption
enthalpy and entropy changes (DadsHm and DadsSm, respectively)
of (R)- and (S)-1-phenylethanol binding with the column.
The DadsHm of (R)- and (S)-1-phenylethanol are À34.0 and
À35.4 kJ molÀ1, respectively. The isoenantioselective tempera-
ture (Tiso) of 336 1C was above the GC oven temperature of
150 1C, suggesting that the separation process is enthalpy
controlled and strong interactions such as hydrogen bonding
and CHÁ Á Áp interactions between the analyte and the CSP are the
major driving forces.15 In addition, the difference D(DadsHm)R–S
of 1.4 kJ molÀ1 between (R)- and (S)-1-phenylethanol suggests
that the (S)-enantiomer binding with the column is more stable
than the (R)-one, consistent with that the (S)-enantiomer was
eluted after the (R)-enantiomer.
3 (a) H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131,
8875–8883; (b) A. Comotti, S. Bracco, M. Mauri, S. Mottadelli, T. Ben,
S. Qiu and P. Sozzani, Angew. Chem., Int. Ed., 2012, 51, 10136–10140;
(c) H. A. Patel, S. H. Je, J. Park, D. P. Chen, Y. Jung, C. T. Yavuz and
A. Coskun, Nat. Commun., 2013, 4, 1357; (d) B. Li, Y. Zhang,
R. Krishna, K. Yao, Y. Han, Z. Wu, D. Ma, Z. Shi, T. Pham,
B. Space, J. Liu, P. Thallapally, J. Liu, M. Chrzanowski and S. Ma,
J. Am. Chem. Soc., 2014, 136, 8654–8660.
4 (a) X. Liu, Y. Xu and D. Jiang, J. Am. Chem. Soc., 2012, 134,
8738–8741; (b) G. H. V. Bertrand, V. K. Michaelis, T. C. Ong, R. G.
Griffin and M. Dinca, Proc. Natl. Acad. Sci. U. S. A., 2013, 110,
4923–4926; (c) C. R. DeBlase, K. E. Silberstein, T.-T. Truong, H. D.
˜
Abruna and W. R. Dichtel, J. Am. Chem. Soc., 2013, 135, 16821–16824;
(d) J. Liu, K.-K. Yee, K. K.-W. Lo, K. Y. Zhang, W.-P. To, C.-M. Che and
Z. Xu, J. Am. Chem. Soc., 2014, 136, 2818–2824.
5 (a) M. Rose, A. Notzon, M. Heitbaum, G. Nickerl, S. Paasch, E. Brunner,
F. Glorius and S. Kaskel, Chem. Commun., 2011, 47, 4814–4816; (b) H. Cho,
H. Lee, J. Chun, S. Lee, H. Kim and S. Son, Chem. Commun., 2011, 47,
917–919; (c) R. K. Totten, M. H. Weston, J. K. Park, O. K. Farha, J. T. Hupp
and S. T. Nguyen, ACS Catal., 2013, 3, 1454–1459.
6 (a) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T.
Hupp, Chem. Soc. Rev., 2009, 38, 1450–1459; (b) A. Corma, H. Garcia
and F. X. L. Xamena, Chem. Rev., 2010, 110, 4606–4655; (c) M. Yoon,
R. Srirambalaji and K. Kim, Chem. Rev., 2012, 112, 1196–1231;
(d) Y. Liu, W. Xuan and Y. Cui, Adv. Mater., 2010, 22, 4112–4135;
(e) Z. Wang, G. Chen and K. Ding, Chem. Rev., 2009, 109, 322–359.
7 (a) L. Ma, M. M. Wanderley and W. Lin, ACS Catal., 2011, 1, 691–697;
(b) C. Bleschke, J. Schmidt, D. S. Kundu, S. Blechert and A. Thomas,
Adv. Synth. Catal., 2011, 353, 3101–3106; (c) D. S. Kundu, J. Schmidt,
C. Bleschke, A. Thomas and S. Blechert, Angew. Chem., Int. Ed., 2012,
51, 5456–5459; (d) C. Wang, Z. Zhang, T. Yue, Y. Sun, L. Wang,
W. Wang, Y. Zhang, C. Liu and W. Wang, Chem. – Eur. J., 2012, 18,
6718–6723; (e) E. Verde-Sesto, M. Pintado-Sierra, A. Corma, E. M.
´
Maya, J. G. de la Campa, M. lglesias and F. Sanchez, Chem. – Eur. J.,
In conclusion, we have prepared three chiral porous diene-
based POFs via cross coupling polycondensation. The diene
groups accessible via open pores of the frameworks could be
metallated with rhodium ions to give an efficient hetero-
geneous catalyst for asymmetric 1,4-addition of arylboronic
acids to enones with up to 93% ee. For the first time, we
demonstrated the utility of a porous POF as a CSP in the
chromatographic separation of racemates based on their different
supramolecular interactions with the selector. The ready tunability
2014, 20, 5111–5120; ( f ) Y. Zhang, B. Li and S. Ma, Chem. Commun.,
2014, 50, 8507–8510.
8 (a) Z. Wang, C. Feng, M. Xu and G. Lin, J. Am. Chem. Soc., 2007, 129,
5336–5337; (b) T. Nishimura, A. Noishiki, G. C. Tsui and T. Hayashi,
J. Am. Chem. Soc., 2012, 134, 5056–5059; (c) B. Ye and N. Cramer,
J. Am. Chem. Soc., 2013, 135, 636–639.
9 (a) T. Hayashi, K. Ueyama, N. Tokunaga and K. Yoshida, J. Am.
Chem. Soc., 2003, 125, 11508–11509; (b) N. Tokunaga, Y. Otomaru,
K. Okamoto, K. Ueyama, R. Shintani and T. Hayashi, J. Am. Chem.
Soc., 2004, 126, 13584–13585; (c) R. Shintani, M. Takeda, T. Tsuji
and T. Hayashi, J. Am. Chem. Soc., 2010, 132, 13168–13169.
of such a modular approach based on olefins promises to lead to a 10 J. M. Falkowski, T. Sawano, T. Zhang, G. Tsun, Y. Chen, J. V. Lockard
and W. Lin, J. Am. Chem. Soc., 2014, 136, 5213–5216.
11 The loading of Rh(I) is accomplished by ligation to the diene
number of chiral organic solids with unique and practically useful
enantioselective functions.
moieties of the polymer, wherein the interaction is inherently
This work was supported by NSFC (21025103, 21371119,
21431004 and 21401128), the ‘‘973’’ Program (2014CB932102
and 2012CB8217) and SSTC-12XD1406300 and 14YF1401300.
weaker than typical covalent bonds, and so almost all of the Rh
species got loss during the reaction and/or recycle workup
procedure.
12 Z. Y. Gu, J. Q. Jiang and X. Yan, Anal. Chem., 2011, 83, 5093–5100.
13 S. Xie, Z. Zhang, Z. Wang and L. Yuan, J. Am. Chem. Soc., 2011, 133,
11892–11895.
14 (a) D. Bradshaw, J. B. Claridge, E. J. Cussen, T. J. Prior and M. J.
Rosseinsky, Acc. Chem. Res., 2005, 38, 273–282; (b) A. L. Nuzhdin,
D. N. Dybtsev, K. P. Bryliakov, E. P. Talsi and V. P. Fedin, J. Am. Chem.
Soc., 2007, 129, 12958–12959; (c) K. Suh, M. P. Yutkin, D. N. Dybtsev,
V. P. Fedin and K. Kim, Chem. Commun., 2012, 48, 513–515; (d) B. Liu,
et al., Angew. Chem., Int. Ed., 2012, 51, 807–810.
Notes and references
1 Also known as porous organic polymers (POPs), porous aromatic
frameworks (PAFs), porous polymer networks (PPNs) and micro-
ˆ ´
porous organic networks (MONs). (a) A. P. Cote, et al., Science, 2005,
310, 1166–1170; (b) A. Thomas, Angew. Chem., Int. Ed., 2010, 49,
8328–8344; (c) R. Dawson, A. I. Cooper and D. J. Adams, Prog. Polym.
Sci., 2012, 37, 530–563; (d) N. B. Mckeown and P. M. Budd, Chem. 15 (a) T. Liu, Y. Liu, W. Xuan and Y. Cui, Angew. Chem., Int. Ed., 2010,
Soc. Rev., 2006, 35, 675–683; (e) Y. Xu, S. Jin, H. Xu, A. Nagai and
D. Jiang, Chem. Soc. Rev., 2013, 42, 8012–8031.
2 (a) E. L. Spitler and W. R. Dichtel, Nat. Chem., 2010, 2, 672–677;
49, 4121–4124; (b) L. Chen, et al., Nat. Mater., 2014, 13, 954–960;
(c) P. Li, Y. He, J. Guang, L. Weng, J. C.-G. Zhao, S. Xiang and
B. Chen, J. Am. Chem. Soc., 2014, 136, 547–549.
(b) S. Yuan, B. Dorney, D. White, S. Kirklin, L. Yu and D. Liu, Chem. 16 J. L. Anderson and D. W. Armstrong, Anal. Chem., 2005, 77, 6453–6462.
Commun., 2010, 46, 4547–4549; (c) W. Lu, D. Yuan, J. Sculley, 17 V. Schurig, J. Chromatogr. A, 2001, 906, 275–299.
14952 | Chem. Commun., 2014, 50, 14949--14952
This journal is ©The Royal Society of Chemistry 2014