Letter
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 24 7957
Compound 4 also appears very interesting, as it is less toxic
than 2 for an activity only 2-fold lower.
(9) Dahl, E. L.; Rosenthal, P. J. Multiple antibiotics exert delayed
effects against the Plasmodium falciparum apicoplast. Antimicrob.
Agents Chemother. 2007, 51, 3485–3490.
In conclusion, the first series of ferrocenic fluoroquino-
lones related to CIPRO has been successfully prepared and
characterized. Our approach shows that the prodrug strat-
egy resulted in a major increase of CIPRO antimalarial
activity and that the bioorganometallic strategy led to an
additional improvement in activity, allowing the identifica-
tion of two promising hits, 2 and 4. In vitro results have to be
confirmed in vivo to determine the bioavailability of these
two molecules and their potential interest as new antimalar-
ials. Because of the potential cytotoxicity of these comp-
ounds, a program will be initiated to identify new derivatives
at least as active but less toxic. Our ciprofloxacine derivatives
represent a promising family to mine new potential antima-
larials.
(
(
10) Anquetin, G.; Greiner, J.; Vierling, P. Quinolone-based drugs
against Toxoplasma gondii and Plasmodium spp. Curr. Drug Tar-
gets: Infect. Disord. 2005, 5, 227–245.
11) (a) Winter, R. W.; Kelly, J. X.; Smilkstein, M. J.; Dodean, R.;
Hinrichs, D.; Riscoe, M. K. Antimalarial quinolones: synthesis,
potency, and mechanistic studies. Exp. Parasitol. 2008, 118, 487–
497. (b) Saleh, A.; Friesen, J.; Baumesteir, S.; Gross, U.; Bohne, W.
Growth inhibition of Toxoplasma gondii and Plasmodium falciparum
by nanomolar concentrations of 1-hydroxy-2-dodecyl-4(1H)quinolone,
a high-affinity inhibitor of alternative (type II) NADH dehydrogenases.
Antimicrob. Agents Chemother. 2007, 51, 1217–1222.
(
12) (a) Dive, D.; Biot, C. Ferrocene conjugates of chloroquine and
other antimalarials: the development of ferroquine, a new anti-
malarial. ChemMedChem 2008, 3, 383–391. (b) Dubar, F.; Khalife, J.;
Brocard, J.; Dive, D.; Biot, C. Ferroquine, an ingenious antimalarial
drug: thoughts on the mechanism of action. Molecules 2008, 13, 2900–
2
907.
(
(
13) http://clinicaltrials.gov/ct2/show/NCT00563914.
14) Sissi, C.; Perdona, E.; Domenici, E.; Feriani, A.; Howells, A. J.;
Maxwell, A.; Palumbo, M. Ciprofloxacin affects conformational
equilibria of DNA gyrase A in the presence of magnesium ions.
J. Mol. Biol. 2001, 311, 195–203.
Acknowledgment. The authors thank Dr. R. Pierce for
critical reading of the manuscript and R. Amalvict, E. Bare,
S. Charras, and S. Lafitte for technical support.
(
15) (a) Cecchetti, V.; Tabarrini, O.; Sabatini, S.; Miao, H.; Filipponi,
E.; Fravolini, A. Studies on 6-aminoquinolones: synthesis and
antibacterial evaluation of 6-amino-8-ethyl- and 6-amino-8-meth-
oxyquinolones. Bioorg. Med. Chem. 1999, 7, 2465–2471. (b) Cecchetti,
V.; Fravolini, A.; Palumbo, M.; Sissi, C.; Tabarrini, O.; Terni, P.; Xin, T.
Potent 6-desfluoro-8-methylquinolones as new lead compounds in
antibacterial chemotherapy. J. Med. Chem. 1996, 39, 4952–4957.
Supporting Information Available: Details of the synthesis
and characterization of conjugates 1-3; protocols for in vitro
experiments; isobolograms of the in vitro interaction between
2 and CQ, QN, MQ, MDAQ, and DHA against the 3D7 strain
of P. falciparum. This material is available free of charge via the
Internet at http://pubs.acs.org.
(
c) Cecchetti, V.; Fravolini, A.; Lorenzini, M. C.; Tabarrini, O.; Terni,
P.; Xin, T. Studies on 6-aminoquinolones: synthesis and antibacterial
evaluation of 6-amino-8-methylquinolones. J. Med. Chem. 1996, 39,
4
36–445.
References
(
16) Primary ferrocenyl amines were synthesized according to the
following: (a) Biot, C.; Pradines, B.; Sergeant; Gut, J.; Rosenthal;
Chibale, K. Design, synthesis, and antimalarial activity of struc-
tural chimeras of thiosemicarbazone and ferroquine analogues.
Bioorg. Med. Chem. Lett. 2007, 17, 6434–6438. (b) Biot, C.; Glorian,
G.; Maciejewski, L.; Brocard, J.; Domarle, O.; Blampain, G.; Millet, P.;
Georges, A. J.; Abessolo, H.; Dive, D.; Lebibi, J. Synthesis and
antimalarial activity in vitro and in vivo of a new ferrocene-chloroquine
analogue. J. Med. Chem. 1997, 40, 3715–3718.
(
1) Hay, S. I.; Guerra, C,A.; Gething, P. W.; Patil, A. P.; Tatem, A. J.;
Noor, A. M.; Kabaria, C. W.; Manh, B. H.; Elyazar, I. R.; Brooker,
S.; Smith, D. L.; Moyeed, R. A.; Snow, R. W. A world malaria
map: Plasmodium falciparum endemicity in 2007. PLoS Med. 2009,
6, No. e1000048.
(
2) Price, R. N.; Douglas, N. M.; Anstey, N. M. New developments in
Plasmodium vivax malaria: severe disease and the rise of chloro-
quine resistance. Curr. Opin. Infect. Dis. 2009, 22, 430–435.
3) (a) Andriantsoanirina, V.; Ratsimbasoa, A.; Bouchier, C.; Jahevitra,
M.; Rabearimanana, S.; Radrianjafy, R.; Andrianaranjaka, V.;
Randriantsoa, T.; Rason; Tichit, M.; Rabarijaona; Mercereau-
Puijalon, O.; Durand, R.; M ꢀe nard, D. P. falciparum drug resistance
in Madagascar: facing the spread of unusual pfdhfr and pfmdr-1
haplotypes and the decrease of dihydroartemisinin susceptibility.
Antimicrob. Agents Chemother. 2009, 53, 4588–4597. (b) Dondorp,
A. M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A. P.; Tarning, J.; Lwin, K. M.;
Ariey, F.; Hanpithakpong, W.; Lee, S. J.; Ringwald, P.; Silamut, K.;
Imwong, M.; Chotivanich, K.; Lim, P.; Herdman, T.; An, S. S.; Yeung,
S.; Singhasivanon, P.; Day, N. P.; Lindegardh, N.; Socheat, D.; White,
N. J. Artemisinin resistance in Plasmodium falciparum malaria. N.
Engl. J. Med. 2009, 361, 455–467.
4) Divo, A. A.; Sartorelli, A. C.; Patton, C. L.; Bia, F. J. Activity of
fluoroquinolone antibiotics against Plasmodium falciparum
in vitro. Antimicrob. Agents Chemother. 1988, 32, 1182–1186.
5) Drlica, K.; Malik, M. Fluoroquinolones: action and resistance.
Curr. Top. Med. Chem. 2003, 3, 249–282.
6) Hooper, D. C. Mechanisms of action and resistance of older and
newer fluoroquinolones. Clin. Infect. Dis. 2001, 32, S24–S28.
7) McFadden, G. I.; Reith, M.; Munholland, J.; Lang-Unnasch, N.
Plastid in human parasites. Nature 1996, 482, 381.
(
(17) Dahl, E. L.; Rosenthal, P. J. Apicoplast translation, transcription
and genome replication: targets for antimalarial antibiotics. Trends
Parasitol. 2008, 24, 279–284.
(18) Dar, M. A.; Sharma, A.; Mondal, N.; Dhar, S. K. Molecular
cloning of apicoplast-targeted Plasmodium falciparum DNA gyrase
genes: unique intrinsic ATPase activity and ATP-independent
dimerization of PfGyrB subunit. Eukaryotic Cell 2007, 6, 398–412.
(19) Andrade, A. A.; de Pilla Varotti, F.; Oliveira de Freitas, I.; Nora de
Souza, M. V.; Alves Vasconcelos, T. R.; Boechat, N.; Krettli, A. U.
Enhanced activity of mefloquine and artesunic acid against Plas-
modium falciparum in vitro and P. berghei in mice by combination
with ciprofloxacin. Eur. J. Pharmacol. 2007, 558, 194–198.
(20) (a) Pradines, B.; Rogier, C.; Fusai, T.; Mosnier, J.; Daries, W.;
Baret, E.; Parzy, D. In vitro activities of antibiotics against
Plasmodium falciparum are inhibited by iron. Antimicrob. Agents
Chemother. 2001, 45, 1746–1750. (b) Pradines, B.; Spiegel, A.; Rogier,
C.; Tall, A.; Mosnier, J.; Fusai, T.; Trape, J. F.; Parzy, D. Antibiotics for
prophylaxis of Plasmodium falciparum infections: in vitro activity of
doxycycline against Senegalese isolates. Am. J. Trop. Med. Hyg.
2000, 62, 82–85.
(
(
(
(
(
(21) Hodges, M.; Yikilmaz, E.; Patterson, G.; Kasvosve, I.; Rouault,
T. A.; Gordeuk, V. R.; Loyevsky, M. An iron regulatory-like
protein expressed in Plasmodium falciparum displays aconitase
activity. Mol. Biochem. Parasitol. 2005, 143, 29–38.
8) Fichera, M. E.; Roos, D. S. A plastid organelle as a drug target in
apicomplexan parasites. Nature 1997, 390, 407–409.