–1
(lit. [16]: 113–114°C). IR spectrum (KBr, ν, cm ): 2924–2855 (CH , CH ), 1726.6 (C=O), 1642.6 (C=C), 1247.3, 1031.6
3
2
1
(C–O–C). H NMR spectrum (400 ÌHz, CDCl , δ, ppm, J/Hz): 5.28 (1H, m, H-6), 4.50 (1H, m, Í-3), 1.99 (3H, s, ÑÎCH ),
3
3
0.92 (3H, s, CH -19), 0.82 (3H, d, J = 6.4, CH -30), 0.77 (3H, d, J = 5.2, CH -21), 0.84 (3H, t, J = 6.40, CH -28), 0.58 (3H, s,
3
3
3
3
13
CH -18). C NMR spectrum (100 MHz, CDCl , δ, ppm): 23.83 (C-1), 27.76 (C-2), 74.03 (C-3), 38.11 (C-4), 139.62 (C-5),
3
3
122.67 (C-6), 31.85 (C-7), 21.03 (C-8), 50.01 (C-9), 36.58 (C-10), 31.85 (C-11), 39.72 (C-12), 42.30 (C-13), 56.68 (C-14),
24.29 (C-15), 28.24 (C-16), 56.12 (C-17), 11.86 (C-18), 19.32 (C-19), 35.80 (C-20), 18.72 (C-21), 36.18 (C-22), 39.52
(C-23), 36.98 (C-24), 28.02 (C-25), 22.58 (C-26), 22.84 (C-27), 21.46 (CH COO), 170.65 (CH COO).
3
3
Allobetulin 3-O-Acetate (3c). TAGU (0.5 g, 1.6 mmol) was added to CHCl (25 mL) and allobetulin (0.3 g,
3
0.7 mmol), stirred for 5 min at room temperature, treated with TFA (7 mL), and stirred at 70°C for 1.5 h. The course of the
reaction was monitored by TLC. When the reaction was finished, the solvent was evaporated. The crude product was
recrystallized first from CHCl and then from Me CO to obtain acetylated product 3c as a white powder (92% yield), R 0.62
3
2
f
–1
(system A), mp 283°C (lit. [17]: 285–287°C). IR spectrum (KBr, ν, cm ): 2924.4–2856 (CH and CH ), 1726 (C=O), 1247.5
and 1023.3 (C–O–C). H NMR spectrum (400 MHz, CDCl , δ, ppm, J/Hz): 0.70 (3H, s, CH ), 0.74 (3H, s, CH ), 0.75 (3H, s,
3
2
1
3
3
3
CH ), 0.77 (3H, s, CH ), 0.83 (3H, s, CH ), 0.87 (3H, s, CH ), 0.94 (3H, s, CH ), 2.08 (3H, s, COCH ), 3.35 (1H, d, J = 7.6,
3
3
3
3
3
3
13
Í -28), 3.46 (1H, s, Í-19), 3.70 (1H, d, J = 7.6, Í -28), 4.38 (1H, m, Í-3α). C NMR spectrum (100 MHz, CDCl , δ, ppm):
à
b
3
15.7, 16.5, 16.5, 18.1, 21.0, 21.37 (CH COO), 23.7, 24.5, 26.2, 26.4 (C-2), 27.9, 28.8, 32.7, 33.8, 34.1, 36.2, 36.7, 37.1, 37.8,
3
38.6, 40.6, 40.7, 41.4, 46.8, 51.0, 55.56, 72.46, 80.96 (C-3), 88.04 (C-19), 171.15 (CH COO).
3
ACKNOWLEDGMENT
The work was sponsored by the Ministry of Education and Science of the Russian Federation (Grant No. 05-13108).
REFERENCES
1.
2.
F. E. Koehn and G. T. Carter, Nat. Rev. Drug Discovery, 4 (3), 206 (2005).
J. W. H. Li and J. C. Vederas, Science, 325, 161 (2009).
3.
4.
5.
6.
H. Hagiwara, K. Morohashi, H. Sakai, T. Suzuki, and M. Ando, Tetrahedron, 54, 5845 (1998).
F. Shirini, M. A. Zolfigol, and S. Mallakpour, Russ. J. Org. Chem., 41, 625 (2005).
F. Shirini, M. A. Zolfigol, M. Abedini, and P. Salehi, Bull. Korean Chem. Soc., 24, 1683 (2003).
C. W. Lee, H. Y. Hwang, H. M. Jeong, U. C. Yoon, and K. W. Chi, Synth. Met., 159, 1820 (2009).
K. Niknam and D. Saberi, Tetrahedron Lett., 50, 5210 (2009).
7.
8.
D. Kuhling, Ann. Chem., 263 (1973).
9.
C. Hase and D. Kuhling, Ann. Chem., 95 (1975).
10.
a) C. M. Tice and B. Ganem, J. Org. Chem., 48, 2106 (1983); b) J. Kalisiak, S. A. Trauger, E. Kalisiak, H. Morita,
V. V. Fokin, M. W. W Adams, K. B. Sharpless, and G. Siuzdak, J. Am. Chem. Soc., 131, 378 (2009).
B. Danieli, M. Luisetti, S. Riva, A. Bertinotti, E. Ragg, and L. Scaglioni, J. Org. Chem., 60, 3637 (1995).
S. Gebhardt, S. Bihler, M. Schubert-Zsilavecz, S. Riva, D. Monti, F. Laura, and B. Danieli, Helv. Chim. Acta,
85, 1943 (2002).
11.
12.
13.
14.
15.
16.
17.
B. Yu, G. Xing, Y. Hui, and X. Han, Tetrahedron Lett., 42, 5513 (2001).
B. Danieli, G. Lesma, M. Luisetti, and S. Riva, Tetrahedron, 53, 5855 (1997).
S. Arrous, A. Bakibaev, P. Hoang, I. Boudebouz, and V. Malkov, Int. J. ChemTech. Res., 11, 285 (2018).
W. F. Bruce and J. O. Ralls, Organic Synthesis, Vol. 2, John Wiley & Sons, New York, 1950, 193 pp.
J. Klinot and A. Vystrcil, Collect. Czech. Chem. Commun., 29, 516 (1964).
484