4 of 5
ABBASI ET AL.
REFERENCES
[1] a) N. Mizuno, M. Misono, Chem. Rev. 1998, 98, 199; b) B. Cornils, W. A.
Herrmann, Applied Homogeneous Catalysis with Organometallic Com-
pounds: A Comprehensive Handbook, VCH, Weinheim 1996; c) P. Barbaro,
F. Liguori, Heterogenized Homogeneous Catalysts for Fine Chemicals Pro-
duction: Catalysis by Metal Complexes, Vol. 33 , Springer, Dordrecht 2010.
[2] a) S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller,
Chem. Rev. 2008, 108, 2064; b) B. Karimi, F. Mansouri, H. M. Mirzaei,
Chem. Cat. Chem. 2015, 7, 1736; c) A. H. Lu, E. L. Salabas, F. Schüth,
Angew. Chem. Int. Ed. 2007, 46, 1222. d) Angew. Chem. 2007, 119, 1242.
[3] R. Cano, D. J. Ramón, M. Yus, J. Org. Chem. 2011, 76, 5547.
[4] a) A. Mori, B. D. Cohen, A. Lowenthal (Eds), Guanidines: Historical, Biolog-
ical, Biochemical and Clinical Aspects of the Naturally Occurring Guanidino
Compounds, Plenum Press, New York 1985; b) Y. Robin, B. Marescau, in
Guanidines: Historical, Biological, Biochemical and Clinical Aspects of the
Naturally Occurring Guanidino Compounds, (Eds: A. Mori, B. D. Cohen,
A. Lowenthal), Plenum Press, New York 1985 383; c) A. Mori, B. D. Cohen,
H. Coide (Eds), Guanidines 2: Further Exploration of the Biological and Clin-
ical Significance of Guanidino Compounds, Plenum Press, New York 1987.
SCHEME
1
Plausible mechanism for CuO@γ‐Fe2O3‐catalysed
[5] a) C. Pi, Z. Zhu, L. Weng, Z. Chen, X. Zhou, Chem. Commun. 2007, 2190;
b) A. Otero, J. Fernandez‐Baeza, A. Antinolo, J. Tejeda, A. Lara‐Sanchez, L.
F. Sanchez‐Barba, I. Lopez‐Solera, A. M. Rodriguez, Inorg. Chem. 2007, 46,
1760; c) P. J. Bailey, S. Pace, Coord. Chem. Rev. 2003, 240, 157; d) M. P.
Coles, Dalton Trans. 2006, 985.
hydroamination of carbodiimides
[6] a) K. S. Kim, L. Qian, Tetrahedron Lett. 1993, 34, 7677; b) C. Levallet, J.
Lerpiniere, S. Y. Ko, Tetrahedron Lett. 1997, 53, 5251; c) K. Feichtinger, C.
Zapf, H. L. Sings, M. Goodman, J. Org. Chem. 1998, 63, 3804; d) M. S.
Bernatowicz, Y. Wu, G. R. Matsueda, Tetrahedron Lett. 1993, 34, 3389; e)
Y. Q. Wu, S. K. Hamilton, D. E. Wilkinson, G. S. Hamilton, J. Org. Chem.
2002, 67, 7553; f) P. Molina, M. Alajarin, J. Saez, Synth. Commun. 1983,
13, 6; g) Y. F. Yong, J. A. Kowalski, M. A. Lipton, J. Org. Chem. 1997, 62,
1540; h) M. A. Poss, E. Iwanowicz, J. A. Reid, J. Lin, Z. Gu, Tetrahedron Lett.
1992, 33, 5933; i) D. H. R. Barton, J. D. Elliott, S. D. Gero, J. Chem. Soc.
Perkin Trans. 2085, 1, 1982; j) C. A. Maryanoff, R. C. Stanzione, J. N.
Plampin, J. E. Mills, J. Org. Chem. 1986, 51, 1882; k) D. R. Kent, W. L. Cody,
A. M. Doherty, Tetrahedron Lett. 1996, 37, 8711; l) Z. X. Guo, A. N.
Cammidge, D. C. Horwell, Synth. Commun. 2000, 30, 2933.
removed from the reaction vessel using an external magnet.
ICP analysis of the decantation revealed no decrease in the
copper content.
The efficiency of our catalytic system was compared with
that of some previously reported procedures in the synthesis
of product 3 s via hydroamination pathway (Table 3). As is
evident from Table 3, our catalytic system is comparable with
others in terms of reaction conditions and yields. Neverthe-
less, low cost, non‐sensitivity to moisture, easy separation
and reusability are advantages of CuO@γ‐Fe2O3 over the
other catalysts.
[7] a) T.‐G. Ong, G. P. A. Yap, D. S. Richeson, J. Am. Chem. Soc. 2003, 125,
8100; b) H. Shen, Z. Xie, Organometllics 2008, 27, 2685.
Although there was no attempt to understand the exact
mechanism of this transformation, it seems that the interac-
tion between CuO nanoparticles and C═N double bond paves
the way for the nucleophilic attack of amine to carbon atom of
carbodiimide followed by hydroamination reaction on C═N
double bond. A plausible mechanism is depicted in
Scheme 1.
[8] a) S. Zhou, S. Wang, G. Yang, Q. Li, L. Zhang, Z. Yao, Z. Zhou, H.‐B. Song,
Organometallics 2007, 26, 3755; b) H. Shen, Z. Xie, J. Organometal. Chem.
2009, 694, 1652; c) D. Li, J. Guang, W.‐X. Zhang, Y. Wang, Z. Xi, Org.
Biomol. Chem. 2010, 8, 1816; d) H. Shen, H.‐S. Chan, Z. Xie, Organometal-
lics 2006, 25, 5515; e) L. Xu, Y.‐C. Wang, W. Ma, W.‐X. Zhang, Z. Xi,
J. Org. Chem. 2014, 79, 12004; f) M. R. Crimmin, A. G. M. Barrett, M.
S. Hill, P. B. Hitchcock, P. A. Procopiou, Organometallics 2008, 27, 497;
g) D. Li, J. Guang, W.‐X. Zhang, Y. Wang, Z. Xi, Org. Biomol. Chem.
2012, 10, 6266; h) Q. Li, S. Wang, S. Zhou, G. Yang, X. Zhu, Y. Liu,
J. Org. Chem. 2007, 72, 6763; i) Z. Du, W. Li, X. Zhu, F. Xu, Q. Shen,
J. Org. Chem. 2008, 73, 8966; j) H. Shen, Y. Wang, Z. Xie, Org. Lett.
2011, 13, 4562; k) W.‐X. Zhang, D. Li, Z. Wang, Z. Xi, Organometallics
2009, 28, 882; l) X. Zhu, Z. Du, F. Xu, Q. Shen, J. Org. Chem. 2009, 74,
6347; m) W.‐X. Zhang, M. Nishiura, Z. Hou, Synlett 2006, 1213. n) F.
Montilla, A. Pastor, A. Galindo, J. Organometal. Chem. 2004, 689, 993; o)
Y. Wu, S. Wang, L. Zhang, G. Yang, X. Zhu, C. Liu, C. Yin, J. Rong, Inorg.
Chim. Acta 2009, 362, 2814; p) W.‐X. Zhang, M. Nishiura, Z. Hou, Chem. –
Eur. J. 2007, 13, 4037; q) C. N. Rowley, T.‐G. Ong, J. Priem, T. K. Woo, D.
S. Richeson, Inorg. Chem. 2008, 47, 9660; r) P.‐H. Wei, L. Xu, L.‐C. Song,
W.‐X. Zhang, Z. Xi, Organometallics 2014, 33, 2784; s) M. L. Kantam, S.
Priyadarshini, P. J. A. Joseph, P. Srinivas, A. Vinu K. J. Klabunde, Y.
Nishina, Tetrahedron 2012, 68, 5730.
4
| CONCLUSIONS
We have developed the use of magnetic nanoparticles as
support in the catalytic synthesis of guanidines via
hydroamination reaction of carbodiimides. CuO stabilized
on maghemite nanoparticles was used as an efficient and
magnetically separable as well as reusable catalyst for this
goal. Various derivatives of guanidines were synthesized
under mild and clean reaction conditions in high yields.
[9] A. Ebrahimi, A. Heydari, A. Esrafili, Catal. Lett. 2014, 144, 2204.
[10] a) M. Arefi, D. Saberi, M. Karimi, A. Heydari, ACS Comb. Sci. 2015, 17,
341; b) D. Saberi, A. Heydari, Appl. Organometal. Chem. 2014, 28, 101;
c) D. Saberi, M. Sheykhan, K. Niknam, A. Heydari, Catal. Sci. Technol.
2013, 3, 2025; d) K. Azizi, M. Karimi, F. Nikbakht, A. Heydari, Appl. Catal.
A 2014, 482, 336; e) K. Azizi, A. Heydari, RSC Adv. 2014, 4, 6508.
ACKNOWLEDGMENTS
We acknowledge Tarbiat Modares University for partial
support of this work.
[11] L. M'amani, A. Heydari, M. Sheykhan, Appl. Catal. A 2010, 384, 122.