Paper
RSC Advances
23 F. Bottaro, A. Takallou, A. Chehaiber and R. Madsen, Eur. J.
Org. Chem., 2019, 2019, 7164–7168.
24 J. M. Humphrey and A. R. Chamberlin, Chem. Rev., 1997, 97,
2243.
L. D. Luca, Org. Lett., 2012, 14, 5014–5017; (c) J. Gu,
Z. Fang, Y. Yang, Z. Yang, L. Wan, X. Li, P. Wei and
K. Guo, RSC Adv., 2016, 6, 89413–89416.
´
43 V. Pascanu, G. G. Miera, A. K. Inge and B. Martın-Matute, J.
25 C. A. G. N. Montalbetti and V. Falque, Tetrahedron, 2005, 61,
10827.
Am. Chem. Soc., 2019, 141, 7223–7234.
44 Y. Sun, L. Zheng, Y. Yang, et al., Nano-Micro Lett., 2020, 12,
26 (a) Y.-J. Kang, H.-A. Chung, J.-J. Kim and Y.-J. Yoon,
103.
Synthesis, 2002, 733; (b) I. Azumaya, T. Okamoto, 45 (a) H. Zhang, L. M. Yang, H. Pan and E. Ganz, Phys. Chem.
F. Imabeppu and H. Takayanagi, Tetrahedron Lett., 2003,
59, 2325; (c) A. Teichert, K. Jantos, K. Harms and A. Studer,
Org. Lett., 2004, 6, 3477; (d) D. M. Shendage, R. Froehlich
and G. Haufe, Org. Lett., 2004, 6, 3675; (e) D. A. Black and
B. A. Arndtsen, Org. Lett., 2006, 8, 1991; (f) A. R. Katritzky,
C. Cai and S. K. Singh, J. Org. Chem., 2006, 71, 3375; (g)
S. D. Roughley and A. M. Jordan, J. Med. Chem., 2011, 54,
3451.
Chem. Phys., 2020, 22, 24614–24623; (b) H. Zhang,
X. Zheng, L. M. Yang and E. Ganz, Inorg. Chem., 2021,
60(4), 2656–2662; (c) H. Zhang, L. M. Yang and E. Ganz,
Langmuir, 2020, 36(46), 14104–14112; (d) H. Zhang,
C. Shang, L. M. Yang and E. Ganz, Inorg. Chem., 2020,
59(22), 16665–16671; (e) H. Zhang, L. M. Yang, H. Pan and
E. Ganz, Cryst. Growth Des., 2020, 20(10), 6337–6345; (f)
H. Zhang, L. M. Yang and E. Ganz, ACS Appl. Mater.
Interfaces, 2020, 12(16), 18533–18540; (g) H. Zhang,
L. M. Yang and E. Ganz, ACS Sustainable Chem. Eng., 2020,
8(38), 14616–14626; (h) X. Zheng, H. Zhang, L. M. Yang
and E. Ganz, Cryst. Growth Des., 2021, 21, 2474–2480.
46 (a) L. Panahi, M. R. Naimi-Jamal, J. Mokhtari and A. Morsali,
Microporous Mesoporous Mater., 2016, 244, 208–217; (b)
S. Akbari, J. Mokhtari and Z. Mirjafary, RSC Adv., 2017, 7,
40881–40886; (c) A. Khosravi, J. Mokhtari, M. R. Naimi-
Jamal, Sh. Tahmasebi and L. Panahi, RSC Adv., 2017, 7,
46022–46027; (d) S. Tahmasebi, A. Khosravi, J. Mokhtari,
M. R. Naimi-Jamal and L. Panahi, J. Organomet. Chem.,
2017, 853, 35–41; (e) J. Mokhtari and B. A. Hassani, Inorg.
Chim. Acta., 2018, 482, 726–731; (f) Z. Ahmadzadeh,
J. Mokhtari and M. Rouhani, RSC Adv., 2018, 8, 24203–
24208; (g) S. Jamalifard, J. Mokhtari and Z. Mirjafary, RSC
Adv., 2019, 9, 22749–22754.
27 (a) E. Beckmann, Ber. Dtsch. Chem. Ges., 1886, 89, 988; (b)
N. A. Owston, A. J. Parker and J. M. J. Williams, Org. Lett.,
2007, 9, 3599.
´
28 (a) L. Yao and J. Aube, J. Am. Chem. Soc., 2007, 129, 2766; (b)
R. F. Schmidt, Ber. Dtsch. Chem. Ges., 1924, 57, 704.
29 (a) I. Ugi, Angew. Chem., Int. Ed., 1962, 74, 9; (b) I. Ugi, Angew.
Chem., Int. Ed. Engl., 1962, 1, 8.
30 A. Kumar, N. A. Espinosa-Jalapa, G. Leitus, Y. Diskin-Posner,
L. Avram and D. Milstein, Angew. Chem., Int. Ed., 2017, 56,
14992–14996.
31 J. Gu, Z. Fang, Y. Yang, Z. Yang, L. Wan, X. Li, P. Wei and
K. Guo, RSC Adv., 2016, 6, 89413.
32 L. U. Nordstrøm, H. Vogt and R. Madsen, J. Am. Chem. Soc.,
2008, 130, 17672–17673.
33 (a) K. Nakagawa, H. Inoue and K. Minami, Chem. Comm.,
1966, 17, 17–18; (b) K. Nakagawa, S. Mineo, S. Kawamura,
M. Horikawa, T. Tokumoto and O. Mori, Synth. Commun., 47 A. E. Wendlandt and S. S. Stahl, Chemoselective
1979, 9, 529.
organocatalytic aerobic oxidation of primary amines to
34 J. Shie and J. Fang, J. Org. Chem., 2003, 68, 1158.
secondary imines, Org. Lett., 2012, 14, 2850–2853.
35 (a) E. I. Marks and A. Mekhala, Tetrahedron Lett., 1990, 31, 48 L. Zhang, W. Wang, A. Wang, Y. Cui, X. Yang, Y. Huang,
7237; (b) L. Wang, H. Fu, Y. Jiang and Y. Zhao, Chem. –Eur. J.,
2008, 14, 10722.
X. Liu, W. Liu, J. Y. Son, H. Ojic and T. Zhang, Green
Chem., 2013, 15, 2680–2684.
36 N. W. Gilman, J. Chem. Soc. D, 1971, 733.
37 S. D. Sarkar and A. Studer, Org. Lett., 2010, 12, 1992.
49 L. U. Nordstrøm, H. Vogt and R. Madsen, J. Am. Chem. Soc.,
2008, 130, 17672–17673.
38 (a) K. Ekoue-Kovi and C. Wolf, Org. Lett., 2007, 9, 3429; (b) 50 A. Kumar, A. Hamdi, Y. Coffinier, A. Addad, P. Roussel,
K. Ekoue-Kovi and C. Wolf, Chem. –Eur. J., 2008, 14, 6302.
39 (a) H. U. Vora and T. Rovis, J. Am. Chem. Soc., 2007, 129,
R. Boukherroub and S. Jain, J. Photochem. Photobiol. A,
2018, 356, 457–463.
13796; (b) J. W. Bode and S. S. Sohn, J. Am. Chem. Soc., 51 F. Bottaro, A. Takallou, A. Chehaiber and R. Madsen, Eur. J.
2007, 129, 13798.
Org. Chem., 2019, 2019, 7164–7168.
40 W.-J. Yoo and C.-J. Li, J. Am. Chem. Soc., 2006, 128, 13064.
41 S. C. Ghosh, J. S. Y. Ngiam, C. L. L. Chai, A. M. Seayad,
D. T. Tuan and A. Chen, Adv. Synth. Catal., 2012, 354, 1407.
52 C. P. Dong, Y. Higashiura, K. Marui, S. Kumazawa,
A. Nomoto, M. Ueshima and A. Ogawa, ACS Omega, 2016,
1, 799–807.
42 (a) S. C. Ghosh, J. S. Y. Ngiam, A. M. Seayad, D. T. Tuan, 53 A. Kumar, N. A. Espinosa-Jalapa, G. Leitus, Y. Diskin-Posner,
C. L. L. Chai and A. Chen, J. Org. Chem., 2012, 77, 8007–
8015; (b) R. Cadoni, A. Porcheddu, G. Giacomelli and
L. Avram and D. Milstein, Angew. Chem., Int. Ed., 2017, 56,
14992–14996.
© 2021 The Author(s). Published by the Royal Society of Chemistry
RSC Adv., 2021, 11, 20788–20793 | 20793