NJC
Paper
4 (a) P. H. Gore, Chem. Rev., 1955, 55, 229; (b) E. Fillion, 23 B. Comanita and D. Aycock, Industrie Pharma Magazine,
D. Fishlock, A. Wilsily and J. M. Goll, J. Org. Chem., 2005,
70, 1316.
5 (a) T. Choshi, S. Yamada, E. Sugino, T. Kuwada and S. Hibino,
2005, 7, 54.
24 S. D. Ramgren, L. Hie, Y. Ye and N. K. Garg, Org. Lett., 2013,
15, 3950.
J. Org. Chem., 1995, 60, 5899; (b) X. F. Wu, H. Neumann, 25 D. R. Spring, S. Krishnan and S. L. Schreiber, J. Am. Chem.
A. Spannenberg, T. Schulz, H. J. Jiao and M. Beller, J. Am. Chem.
Soc., 2010, 132, 14596.
6 (a) M. Blangetti, H. Rosso, C. Prandi, A. Deagostino and
P. Venturello, Molecules, 2013, 18, 1188; (b) M. Mondal and
Soc., 2000, 122, 5656.
26 (a) L. Delhaye, A. Merschaert, P. Delbeke and W. Brione, Org.
Process Res. Dev., 2007, 11, 689; (b) M. Guillaume, J. Cuypers
and J. Dingenen, Org. Process Res. Dev., 2007, 11, 1079.
U. Bora, Appl. Organomet. Chem., 2014, 28, 354 and reference 27 P. Anastas and N. Eghbali, Chem. Soc. Rev., 2010, 39, 301.
cited therein.
28 V. Antonucci, J. Coleman, J. B. Ferry, N. Johnson, M. Mathe,
7 In general boronic acids are non-toxic; however, 50% of aryl
boronic acids are mutagenic.
J. P. Scott and J. Xu, Org. Process Res. Dev., 2011, 15, 939.
´
´
29 V. Pace, P. Hoyos, L. Castoldi, P. D. de Marıa and A. R. Alcantara,
8 (a) N. A. Bumagin and D. N. Korolev, Tetrahedron Lett., 1999,
ChemSusChem, 2012, 5, 1369.
´
40, 3057; (b) B. P. Bandgar and A. V. Patil, Tetrahedron Lett., 30 (a) E. Alacid, D. A. Alonso, L. Botella, C. Najera and M. C.
2005, 46, 7627.
Pacheco, Chem. Rec., 2006, 6, 117; (b) D. A. Alonso and
´
C. Najera, Chem. Soc. Rev., 2010, 39, 2891.
9 B. Xin, Y. Zhang and K. Cheng, J. Org. Chem., 2006, 71, 5725.
10 D. Ogawa, K. Hyodo, M. Suetsugu, J. Li, Y. Inoue, M. Fujisawa, 31 (a) M. Mondal and U. Bora, Green Chem., 2012, 14, 1873;
M. Iwasaki, K. Takagi and Y. Nishihara, Tetrahedron, 2013,
69, 2565.
(b) M. Mondal, G. Sarmah, K. Gogoi and U. Bora, Tetrahedron
Lett., 2012, 53, 6219; (c) M. Mondal and U. Bora, Tetrahedron Lett.,
2014, 55, 3038; (d) T. Begum, M. Mondal, P. K. Gogoi and U. Bora,
RSC Adv., 2015, 5, 38085; (e) A. Gogoi, A. Dewan, G. Borah and
U. Bora, New J. Chem., 2015, 39, 3341; ( f ) A. Gogoi, A. Dewan and
U. Bora, RSC Adv., 2015, 5, 16; (g) T. Begum, A. Gogoi, P. K. Gogoi
and U. Bora, Tetrahedron Lett., 2015, 56, 95.
11 (a) M. Haddach and J. R. McCarthy, Tetrahedron Lett., 1999,
40, 3109; (b) H. Chen and M.-Z. Deng, Org. Lett., 2000, 2, 1649;
(c) Y. Urawa and K. Ogura, Tetrahedron Lett., 2003, 44, 271;
(d) S. Eddarir, N. Cotelle, Y. Bakkour and C. Rolando, Tetrahedron
Lett., 2003, 44, 5359.
12 Y. Nishihara, Y. Inoue, M. Fujisawa and K. Takagi, Synlett, 32 V. Pace, Aust. J. Chem., 2012, 65, 301.
2005, 2309.
33 (a) G. M. Whitesides, M. Hackett, R. L. Brainard, J. P. P. M.
13 K. Ekoue-Kovi, H. Xu and C. Wolf, Tetrahedron Lett., 2008,
49, 5773.
14 V. Polackova, S. Toma and I. Augustınova, Tetrahedron,
2006, 62, 11675.
15 L. Zhang, J. Wu, L. Shi, C. Xia and F. Li, Tetrahedron Lett.,
2011, 52, 3897.
16 F. Rafiee and A. R. Hajipour, Appl. Organomet. Chem., 2015,
29, 181.
Lavalleye, A. F. Sowinski, A. N. Izumi, S. S. Moore, D. W. Brown
and E. M. Staudt, Organometallics, 1985, 4, 819; (b) C. Paal and
W. Hartmann, Chem. Ber., 1918, 51, 711.
34 (a) D. R. Anton and R. H. Crabtree, Organometallics, 1983,
2, 855; (b) L. N. Lewis and N. Lewis, J. Am. Chem. Soc., 1986,
108, 7228; (c) Y. Lin and R. G. Finke, Inorg. Chem., 1994,
33, 4891; (d) K. S. Weddle, J. D. Aiken III and R. G. Finke,
J. Am. Chem. Soc., 1998, 120, 5653; (e) R. van Asselt and
C. J. Elsevier, J. Mol. Catal., 1991, 65, L13; ( f ) P. Foley,
R. DiCosimo and G. M. Whitesides, J. Am. Chem. Soc., 1980,
102, 6713; (g) G. Su¨ss-Fink, M. Faure and T. R. Ward, Angew.
Chem., Int. Ed., 2002, 41, 99; (h) L. N. Lewis, J. Am. Chem.
Soc., 1986, 108, 743.
17 (a) P. G. Jessop, Green Chem., 2011, 13, 1391; (b) Y. Zhang, B. R.
Bakshi and E. S. Demessie, Environ. Sci. Technol., 2008, 42, 1724.
18 J. M. Fortunak, Future Med. Chem., 2009, 1, 571.
´
19 V. Pace, L. Castoldi, A. R. Alcantara and W. Holzera, RSC
Adv., 2013, 3, 10158.
20 (a) D. F. Aycock, Org. Process Res. Dev., 2007, 11, 156; 35 (a) J. Chen, Y. Peng, M. Liu, J. Ding, W. Su and H. Wua, Adv.
´ ˆ
(b) Y. Gu and F. Jerome, Chem. Soc. Rev., 2013, 42, 9550.
Synth. Catal., 2012, 2117; (b) Y. B. Kwon, B. R. Choi, S. H. Lee,
J. Seo and C. M. Yoon, Bull. Korean Chem. Soc., 2010, 31, 2672;
(c) K. Tatsumi, T. Fujihara, J. Terao and Y. Tsuji, Chem.
Commun., 2014, 50, 8476; (d) L. J. Goossen and K. Ghosh,
Eur. J. Org. Chem., 2002, 3254; (e) H. Tatamidani, F. Kakiuchi
and N. Chatani, Org. Lett., 2004, 6, 3597.
21 Other advantages of 2-MeTHF includes: (i) easy aqueous
phase separation due to immiscibility with water; (ii) reuse
and recycling due to azeotrope with water; (iii) better
stability to acids and bases; and (iv) low volatility and higher
flash point; (v) the lowest carbon footprint amongst industrial
solvents, see: ref. 20.
36 A. Yu, L. Shen, X. Cui, D. Peng and Y. Wu, Tetrahedron, 2012,
68, 2283.
37 S. S. Kulp and M. J. McGee, J. Org. Chem., 1983, 48, 4097.
22 A. Kadam, M. Nguyen, M. Kopach, P. Richardson, F. Gallou,
Z.-K. Wane and W. Zhang, Green Chem., 2013, 15, 1880.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016
New J. Chem.