Page 9 of 11
Journal of the American Chemical Society
Zn10L15 Ion Channels Through Subcomponent Self-Assembly. An-
Xie, T. Z.; Endres, K. J.; Guo, Z.; Ludlow III, J. M.; Moorefield, C. N.;
Saunders, M. J.; Wesdemiotis, C.; Newkome, G. R. Controlled Inter-
conversion of Superposed-Bistriangle, Octahedron, and Cubocta-
hedron Cages Constructed Using a Single, Terpyridinyl-Based Pol-
yligand and Zn2+. J. Am. Chem. Soc. 2016, 138, 12344–12347.
(12) (a) Sun, S. S.; Anspach, J. A.; Lees, A. J. Self-Assembly of Tran-
sition-Metal-Based Macrocycles Linked by Photoisomerizable Lig-
ands: Examples of Photoinduced Conversion of Tetranuclear-Dinu-
clear Squares. Inorg. Chem. 2002, 41, 1862–1869. (b) Li, M.; Chen,
L.-J.; Cai, Y.; Luo, Q.; Li, W.; Yang, H.-B.; Tian, H.; Zhu, W.-H. Light-
Driven Chiral Switching of Supramolecular Metallacycles with Pho-
toreversibility. Chem 2019, 5, 634–648. (c) Li, M.; Chen, L. J.; Zhang,
Z.; Luo, Q.; Yang, H. B.; Tian, H.; Zhu, W. H. Conformer-Dependent
Self-Assembled Metallacycles with Photo-Reversible Response.
Chem. Sci. 2019, 10, 4896–4904. (d) Zheng, W.; Wang, W.; Jiang, S.
T.; Yang, G.; Li, Z.; Wang, X. Q.; Yin, G. Q.; Zhang, Y.; Tan, H.; Li, X.;
Ding, H.; Chen, G.; Yang, H. B. Supramolecular Transformation of
Metallacycle-Linked Star Polymers Driven by Simple Phosphine
Ligand-Exchange Reaction. J. Am. Chem. Soc. 2019, 141, 583–591.
(13) (a) Burke, M. J.; Nichol, G. S.; Lusby, P. J. Orthogonal Selection
and Fixing of Coordination Self-Assembly Pathways for Robust
Metallo-Organic Ensemble Construction. J. Am. Chem. Soc. 2016,
138, 9308–9315. (b) Wang, S.; Sawada, T.; Fujita, M. Capsule-Bowl
Conversion Triggered by a Guest Reaction. Chem. Commun. 2016,
52, 11653–11656. (c) Yadav, A.; Gupta, A. K.; Steiner, A.; Boomis-
hankar R. Mapping the Assembly of Metal-Organic Cages into Com-
plex Coordination Networks. Chem. Eur. J. 2017, 23, 18296–18302.
(d) Liu, J. J.; Lin, Y. J.; Li, Z. H.; Jin, G. X. Self-Assembled Half-Sand-
wich Polyhedral Cages via Flexible Schiff-Base Ligands: An Unusual
Macrocycle-To-Cage Conversion. Dalton Trans. 2016, 45, 13675–
13679. (e) Liu, D.; Jiang, Z.; Wang, M.; Yang, X.; Liu, H.; Chen, M.;
Moorefield, C. N.; Newkome, G. R.; Li, X.; Wang, P. 3D Helical and 2D
Rhomboidal Supramolecules: Stepwise Self-Assembly and Dy-
namic Transformation of Terpyridine-Based Metallo-Architec-
tures. Chem. Commun. 2016, 52, 9773–9776.
(14) (a) Hiraoka, S.; Harano, K.; Shiro, M.; Shionoya, M. Quantita-
tive Dynamic Interconversion Between Ag(I)-Mediated Capsule
and Cage Complexes Accompanying Guest Encapsulation/Release.
Angew. Chem., Int. Ed. 2005, 44, 2727–2731. (b) Kuwabara, J.; Stern,
C. L.; Mirkin, C. A. A Coordination Chemistry Approach to a Multief-
fector Enzyme Mimic. J. Am. Chem. Soc. 2007, 129, 10074–10075.
(c) Zheng, Y. R.; Lan, W. J.; Wang, M.; Cook, T. R.; Stang, P. J. Designed
Post-Self-Assembly Structural and Functional Modifications of a
Truncated Tetrahedron. J. Am. Chem. Soc. 2011, 133, 17045–17055.
(d) Han, M.; Michel, R.; He, B.; Yu-Chen, S.; Stalke, D.; John, M.;
Clever, G. H. Light-Triggered Guest Uptake and Release by a Photo-
chromic Coordination Cage. Angew. Chem., Int. Ed. 2013, 52, 1319–
1323. (e) Kishi, N.; Akita, M.; Yoshizawa, M. Selective Host-Guest
Interactions of a Transformable Coordination Capsule/Tube with
Fullerenes. Angew. Chem., Int. Ed. 2014, 53, 3604–3607. (f) Preston,
D.; Fox-Charles, A.; Lo, W. K.; Crowley, J. D. Chloride Triggered Re-
versible Switching from a Metallosupramolecular [Pd2L4]4+ Cage to
a [Pd2L2Cl4] Metallo-Macrocycle with Release of Endo- and Exo-He-
drally Bound Guests. Chem. Commun. 2015, 51, 9042–9045. (g)
Zhang, D.; Ronson, T. K.; Güryel, S.; Thoburn, J. D.; Wales, D. J.;
Nitschke, J. R. Temperature Controls Guest Uptake and Release
from Zn4L4 Tetrahedra. J. Am. Chem. Soc. 2019, 141, 14534−14538.
(15) Lifschitz, A. M.; Rosen, M. S.; McGuirk, C. M.; Mirkin, C. A. Al-
losteric Supramolecular Coordination Constructs. J. Am. Chem. Soc.
2015, 137, 7252–7261.
gew. Chem., Int. Ed. 2017, 56, 15388–15392. (c) Hong, C. M.;
Morimoto, M.; Kapustin, E. A.; Alzakhem, N.; Bergman, R. G.; Ray-
mond, K. N.; Toste, F. D. Deconvoluting the Role of Charge in a Su-
pramolecular Catalyst. J. Am. Chem. Soc. 2018, 140, 6591–6595. (d)
Cullen, W.; Metherell, A. J.; Wragg, A. B.; Taylor, C. G. P., Williams, N.
H.; Ward, M. D. Catalysis in a Cationic Coordination Cage Using a
Cavity-Bound Guest and Surface-Bound Anions: Inhibition, Activa-
tion, and Autocatalysis. J. Am. Chem. Soc. 2018, 140, 2821–2828. (e)
Zhao, L.; Wei, J.; Zhang, J.; He, C.; Duan, C. Encapsulation of a
Quinhydrone Cofactor in the Inner Pocket of Cobalt Triangular
Prisms: Combined Light-Driven Reduction of Protons and Hydro-
genation of Nitrobenzene. Angew. Chem., Int. Ed. 2017, 56, 15284–
15288. (f) Martí-Centelles, V.; Lawrence, A. L.; Lusby, P. J. High Ac-
tivity and Efficient Turnover by a Simple, Self-Assembled "Artificial
Diels-Alderase". J. Am. Chem. Soc. 2018, 140, 2862–2868. (g) Bhat,
I. A.; Devaraj, A.; Howlader, P.; Chi, K. W.; Mukherjee, P. S. Prepara-
tion of a Chiral Pt12 Tetrahedral Cage and Its Use in Catalytic Mi-
chael Addition Reaction. Chem. Commun. 2018, 54, 4814–4817. (h)
Preston, D.; Gordon, K. C.; Sutton, J. J.; Crowley J. D. A Nona-Nuclear
Heterometallic Pd3Pt6 "Donut" Shaped Cage: Molecular Recogni-
tion and Photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 8659–
8663.
(6) (a) McConnell, A. J.; Wood, C. S.; Neelakandan, P. P.; Nitschke,
J. R. Stimuli-Responsive Metal-Ligand Assemblies. Chem. Rev. 2015,
115, 7729–7793. (b) Wang, W.; Wang, Y. X.; Yang, H. B. Supramo-
lecular Transformations Within Discrete Coordination-Driven Su-
pramolecular Architectures. Chem. Soc. Rev. 2016, 45, 2656–2693.
(7) (a) Hiraoka, S.; Yi, T.; Shiro, M.; Shionoya, M. Triangular and
Tetrahedral Array of Silver(I) Ions by a Novel Disk-Shaped Triden-
tate Ligand: Dynamic Control of Coordination Equilibrium of the
Silver(I) Complexes. J. Am. Chem. Soc. 2002, 124, 14510–14511. (b)
Harano, K.; Hiraoka, S.; Shionoya, M. 3 nm-Scale Molecular Switch-
ing Between Fluorescent Coordination Capsule and Nonfluores-
cent Cage. J. Am. Chem. Soc. 2007, 129, 5300–5301. (c) Hiraoka, S.;
Sakata, Y.; Shionoya, M. Ti(IV)-Centered Dynamic Interconversion
Between Pd(II), Ti(IV)-Containing Ring and Cage Molecules. J. Am.
Chem. Soc. 2008, 130, 10058–10059.
(8) (a) Sakata, Y.; Hiraoka, S.; Shionoya, M. Site-Selective Ligand
Exchange on a Heteroleptic Ti(IV) Complex Towards Stepwise
Multicomponent Self-Assembly. Chem. Eur. J. 2010, 16, 3318–3325.
(b) Li, J. R.; Zhou, H. C. Bridging-Ligand-Substitution Strategy for
the Preparation of Metal-Organic Polyhedra. Nat. Chem. 2010, 2,
893–898. (c) Prusty, S.; Yazaki, K.; Yoshizawa, M.; Chand, D. K. A
Truncated Molecular Star. Chem. Eur. J. 2017, 23, 12456–12461.
(d) Bloch, W. M.; Holstein, J. J.; Hiller, W.; Clever, G. H. Morphologi-
cal Control of Heteroleptic cis- and trans-Pd2L2L'2 Cages. Angew.
Chem., Int. Ed. 2017, 56, 8285–8289. (e) d'Aquino, A. I.; Cheng, H.
F.; Barroso-Flores, J.; Kean, Z. S.; Mendez-Arroyo, J.; McGuirk, C. M.;
Mirkin, C. A. An Allosterically Regulated, Four-State Macrocycle. In-
org. Chem. 2018, 57, 3568–3578. (f) Preston, D.; Barnsley, J. E.; Gor-
don, K. C.; Crowley, J. D. Controlled Formation of Heteroleptic
[Pd2(La)2(Lb)2]4+ Cages. J. Am. Chem. Soc. 2016, 138, 10578–10585.
(9) (a) Fujita, M.; Ibukuro, F.; Hagihara, H.; Ogura K. Quantitative
Self-Assembly of a [2]Catenane from Two Preformed Molecular
Rings. Nature 1994, 367, 720–723 (b) Liu, C. L.; Zhou, L. P.; Tripa-
thy, D.; Sun, Q. F. Self-Assembly of Stable Luminescent Lanthanide
Supramolecular M4L6 Cages with Sensing Properties Toward Ni-
troaromatics. Chem. Commun. 2017, 53, 2459–2462.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) (a) Scherer, M.; Caulder, D. L.; Johnson, D. W.; Raymond, K.
N. Triple Helicate-Tetrahedral Cluster Interconversion Controlled
by Host-Guest Interactions. Angew. Chem., Int. Ed. 1999, 38, 1587–
1592. (b) Hong, C. M.; Kaphan, D. M.; Bergman, R. G.; Raymond, K.
N.; Toste, F. D. Conformational Selection as the Mechanism of Guest
Binding in a Flexible Supramolecular Host. J. Am. Chem. Soc. 2017,
139, 8013–8021.
(11) (a) Fujita, M.; Sasaki, O.; Mitsuhashi, T.; Fujita, T.; Yazaki, J.;
Yamaguchi, K.; Ogura, K. On the Structure of Transition-Metal-
Linked Molecular Squares. Chem. Commun. 1996, 1535–1536. (b)
(16) (a) Monod, J.; Changeux J.-P., Jacob, F. Allosteric Proteins and
Cellular Control Systems. J. Mol. Biol. 1963, 6, 306–329. (b) Perutz,
M. F.; Stereochemistry of Cooperative Effects in Haemoglobin:
Haem–Haem Interaction and the Problem of Allostery. Nature
1970, 228, 726–734. (c) Saibil, H. R.; Fenton, W. A.; Clare, D. K.; Hor-
wich, A. L. Structure and Allostery of the Chaperonin GroEL. J. Mol.
Biol. 2013, 425, 1476–1487.
(17) (a) Monod, J.; Wyman, J.; Changeux J.-P. On the Nature of Al-
losteric Transitions: a Plausible Model. J. Mol. Biol. 1965, 12, 88–
ACS Paragon Plus Environment