Communication
Organic & Biomolecular Chemistry
Based on the above results related to the sequential multi-
catalysis, a plausible double catalytic cycle is proposed in
Scheme 4. The first catalytic cycle which corresponds to the
known organocatalytic α-amination would start by the for-
mation of the enamine A which would react with DtBAD to
afford the iminium intermediate B. A subsequent hydrolysis
would regenerate the primary amine catalyst 5 and would liber-
ate the α-hydrazino aldehyde 7. Based on a mechanistic study
published by Melchiorre in 2013,21 a postulated transition
state explaining the Si face selectivity of the addition was pro-
posed. The second catalytic cycle would start by the oxidative
addition of aryl iodide to palladium(0) followed by the inser-
tion of this complex to the allene moiety of the newly syn-
thesized compound 7. An intramolecular reaction to form
cyclic 6-membered heterocycles between hydrazine and π-allyl
species of intermediate C in the presence of a base would give
rise to hexahydropyridazines 7–15. The low diastereo-
selectivities could originate from the existence of different con-
formations for C which are in equilibrium. This would lead to
both diastereomers of the cyclization product.
( j) S. M. Inamdar, V. S. Shinde and N. T. Patil, Org. Biomol.
Chem., 2015, 13, 8116–8162; (k) G. Jürjens, A. Kirschning
and D. A. Candito, Nat. Prod. Rep., 2015, 32, 723–737.
3 (a) C. C. J. Loh and D. Enders, Chem. – Eur. J., 2012, 18,
10212–10225; (b) Z. Du and Z. Shao, Chem. Soc. Rev., 2013,
42, 1337–1378; (c) M. Á. Fernández-Ibañez, B. Marciá,
D. A. Alonso and I. M. Pastor, Molecules, 2013, 18, 10108–
10121; (d) Y. Deng, S. Kumar and H. Wang, Chem.
Commun., 2014, 50, 4272–4284; (e) A. Gualandi,
L. Mengozzi, C. M. Wilson and P. G. Cozzi, Chem. – Asian J.,
2014, 9, 984–995; (f) D.-F. Chen, Z.-Y. Han, X.-L. Zhou and
L.-Z. Gong, Acc. Chem. Res., 2014, 47, 2365–2377;
(g) A. Cordova, Pure Appl. Chem., 2015, 17, 1011–1019.
4 Heterocycles
in
Natural
Product
Synthesis,
ed.
K. C. Majumdar and S. K. Chattopadhyay, Wiley-VCH,
Weinheim, 2011.
5 E. Vitaku, D. T. Smith and J. T. Njardarson, J. Med. Chem.,
2014, 57, 10257–10274.
6 (a) A. J. Oelke, D. J. France, T. Hofmann, G. Wuitschik and
S. V. Ley, Nat. Prod. Rep., 2011, 28, 1445–1471;
(b) C. G. Wermuth, Med. Chem. Commun., 2011, 2, 935–941;
(c) G. Le Goff and J. Ouazzani, Bioorg. Med. Chem., 2014,
22, 6529–6544.
7 (a) M. A. Ciufolini and N. Xi, Chem. Soc. Rev., 1998, 27,
437–445; (b) C.-H. Küchenthal and W. Maison, Synthesis,
2007, 719–740; (c) S. Tšupova and U. Mäeorg, Heterocycles,
2014, 88, 129–173.
To conclude, we have developed an efficient one-pot multi-
catalytic synthesis of nitrogen-containing heterocycles from
2-arylhepta-5,6-dienal. The overall protocol involves an organo-
catalytic α-amination reaction and a Pd-catalyzed cyclization.
The methodology provides rapid and mild access toward
useful and interesting cyclic 6-membered hydrazines. The
application of the multicatalytic process to more challenging
substrates is currently in progress in our laboratory.
8 Modern Amination Methods, ed. A. Ricci, Wiley-VCH, Wein-
heim, 2008.
9 I. Mangion, N. Strotman, M. Drahl, J. Imbriglio and
E. Guigry, Org. Lett., 2009, 11, 3258–3260.
10 (a) A. J. Oelke, S. Kumarn, D. A. Longbottom and S. V. Ley,
Synlett, 2006, 2548–2552; (b) S. Kumarn, A. J. Oelke,
D. M. Shaw, D. A. Longbottom and S. V. Ley, Org. Biomol.
Chem., 2007, 5, 2678–2689.
Acknowledgements
The authors thank the LabEx CHARM3AT for financial support
(A.-S.M.) and the University of Versailles-St-Quentin-en-Yve-
lines for a Ph.D. grant (M.G.). F. Bourdreux and E. Galmiche-
Loire are gratefully acknowledged for their help in NMR and 11 (a) Y. Henmi, K. Makino, Y. Yoshitomi, O. Hara and
ESI-MS analyses.
Y. Hamada, Tetrahedron: Asymmetry, 2004, 15, 3477–3481;
(b) S. Chandrasekhar, G. Parimala, B. Tiwari,
C. Narsihmulu and G. D. Sarma, Synthesis, 2007, 1677–
1682.
Notes and references
12 (a) P. S. Aburel, W. Zhuang, R. G. Hazell and
K. A. Jørgensen, Org. Biomol. Chem., 2005, 3, 2344–2349;
(b) M. Kawasaki and H. Yamamoto, J. Am. Chem. Soc., 2006,
128, 16482–16483; (c) B. Liu, K.-N. Li, S.-W. Luo,
J.-Z. Huang, H. Pang and L.-Z. Gong, J. Am. Chem. Soc.,
2013, 135, 3323–3332; (d) B. Liu, T.-Y. Liu, S.-W. Luo and
L.-Z. Gong, Org. Lett., 2014, 16, 6164–6167.
1 Chirality in Drug Research, ed. E. Francotte and W. Lindner,
Wiley-VCH, Weinheim, 2007.
2 (a) Multicatalyst System in Asymmetric Catalysis, ed. J. Zhou,
John Wiley & Sons, New York, 2014; (b) Cooperative Cataly-
sis: Designing Efficient Catalysts for Synthesis, ed. R. Peters,
Wiley-VCH, Weinheim, 2015; (c) L. M. Ambrosini and
T. H. Lambert, ChemCatChem, 2010, 2, 1373–1380; 13 (a) C. Greck, L. Bischoff and J. P. Genêt, Tetrahedron: Asym-
(d) S. Piovesana, D. M. S. Schietroma and M. Bella, Angew.
Chem., Int. Ed., 2011, 50, 6216–6232; (e) R. C. Wende and
P. R. Schreiner, Green Chem., 2012, 14, 1821–1849;
(f) A. E. Allen and D. W. C. MacMillan, Chem. Sci., 2012, 3,
633–658; (g) H. Pelissier, Tetrahedron, 2013, 69, 7171–7210;
(h) M. Rueping, J. Dufour and L. Bui, ACS Catal., 2014, 4,
1021–1025; (i) M. N. Hopkinson, B. Sahoo, J.-L. Li and
metry, 1995, 6, 1989–1994; D. Kalch, R. Ait Youcef,
X. Moreau, C. Thomassigny and C. Greck, Tetrahedron:
Asymmetry, 2010, 21, 2302–2306; (b) A. Desmarchelier,
V. Coeffard, X. Moreau and C. Greck, Chem. – Eur. J., 2012,
18, 13222–13225; (c) S. Bouvet, X. Moreau, V. Coeffard and
C. Greck, J. Org. Chem., 2013, 78, 427–437;
(d) L. Crouillebois, L. Pantaine, J. Marrot, V. Coeffard,
X. Moreau and C. Greck, J. Org. Chem., 2015, 80, 595–601.
F. Glorius, Chem.
– Eur. J., 2014, 20, 3874–3886;
Org. Biomol. Chem.
This journal is © The Royal Society of Chemistry 2016