Y. Gök et al.
K. Muñiz-Fernández, A. Seger, G. Raabe, K. Günther, J. Org. Chem. 1998,
63, 7860; e) L. Pu, H.-B. Yu, Chem. Rev. 2001, 101, 757.
addition of diethylzinc to aromatic aldehydes (Table 2). Titanium-
mediated reactions are reported to give more efficient and selective
results.[16] Considering these literature data, the efficiencies of the chi-
ral diols in combination with Ti(OiPr)4 was explored. Dichloromethane
was chosen as reaction solvent as it gave a better enantioselectivity in
the absence of the additive. In our reaction, an aldehyde:Et2Zn (1 M so-
lution in hexane): i(OiPr)4:ligand ratio of 1:2:1:0.1 was used at room tem-
perature for 24 h. Significantly, excellent enantioselectivities are
recorded with 2-methoxybenzaldehyde, 1-naphthaldehyde and benz-
aldehyde using both diols 4 and 5 (Table 2, entries 1–4, 7 and 8). We
also observe some enantioselectivities with 3-methoxybenzaldehyde;
however, racemic mixtures are obtained without titanium (Table 2,
entries 9 and 10). Adding an extra metal gives satisfactory results for
all test substrates used except 3-chlorobenzaldehyde (Table 2, entries
5 and 6).
[2] a) N. Oguni, T. Omi, Tetrahedron Lett. 1984, 25, 2823; b) K. Soai,
T. Shibata, in Comprehensive Asymmetric Catalysis, Vol. 2 (Eds.: E. N.
Jacobsen, A. Pfaltz, H. Yamamoto), Springer Verlag, Berlin, 1999,
pp. 911–922; c) G. Zhao, X.-G. Li, R. Wang, Tetrahedron: Asymmetry
2001, 12, 399; d) J. Lu, X. Xu, S. Wang, C. Wang, Y. Hu, H. Hu, J. Chem.
Soc. Perkin Trans. 1 2002, 24, 2900; e) S. W. Kang, D. H. Ko, K. H. Kim,
D.-C. Ha, Org. Lett. 2003, 5, 4517; f) A. Bisai, P. K. Singh, V. K. Singh,
Tetrahedron 2007, 63, 598; g) J. E. D. Martins, M. Wills, Tetrahedron:
Asymmetry 2008, 19, 1250; h) J. Mao, Synth. Commun. 2009, 39, 3710;
i) J. T. Zacharia, T. Tanaka, Y. Uesaka, M. Hayashi, Synthesis 2012, 44, 1625.
[3] a) J. C. Anderson, M. Harding, Chem. Commun. 1998, 3, 393; b)
E. Rijnberg, M. D. Janssen, J. Boersma, G. Van Koten, Tetrahedron Lett.
1994, 35, 6521.
[4] a) W. M. Dai, H. J. Zhu, Tetrahedron: Asymmetry 1996, 7, 1245; b)
G. Bringmann, M. Breuning, Tetrahedron: Asymmetry 1998, 9, 667.
[5] a) X. W. Yang, J. H. Shen, C. S. Da, H. S. Wang, J. Org. Chem. 2000, 65, 295;
b) H. Kodama, J. Ito, A. Nagaki, T. Ohta, I. Furukawa, Appl. Organometal.
Chem. 2000, 14, 709.
[6] a) S. Pritchett, D. H. Woodmansee, P. Gantzel, P. J. Walsh, J. Am. Chem.
Soc. 1998, 120, 6423; b) M. G. Baker-Salisbury, B. S. Starkman,
G. M. Frisenda, L. A. Roteta, J. M. Tanski, Inorg. Chim. Acta 2013, 409,
394; c) T. Harada, K. Handa, Y. Hiraoka, Y. Marutani, M. Nakatsugawa,
Tetrahedron: Asymmetry 2004, 15, 3879.
[7] a) D. Seebach, A. K. Beck, B. Schmidt, Y. M. Wang, Tetrahedron 1994,
50, 4363; b) J. Balsells, J. T. Davis, P. Carroll, P. J. Walsh, J. Am. Chem.
Soc. 2002, 124, 10336; c) Y. Gök, L. Kekeç, Tetrahedron Lett. 2014,
55, 2227.
Conclusions
C2-symmetric diol bidentate ligands were prepared in good yields
using short synthetic sequences. The synthesized ligands were
evaluated in the alkylation of various aromatic aldehydes with
diethylzinc. The best results were obtained with 1-naphthaldehyde
and 3-chlorobenzaldehyde. When the aromatic ring bears electron-
releasing substituents, different results were obtained related to the
position of the substituents on the aromatic ring. While 2-methoxy-
substituted benzaldehyde afforded good to moderate selectivities,
3-methoxy-substituted benzaldehyde showed no selectivity. Mod-
erate selectivities were obtained with benzaldehyde, a standard
test substrate for this kind of reaction. Furthermore, with the excep-
tion of 1-naphthaldehyde and 3-chlorobenzaldehyde, treatment
using titanium isopropoxide under the same conditions as in the
absence of Ti(IV) increased all the enantioselectivities.
[8] a) J. Whitesell, Chem. Rev. 1989, 89, 1581; b) C. Halm, M. J. Kurth, Angew.
Chem. Int. Ed. 1998, 37, 510.
[9] K. Okano, Tetrahedron 2011, 67, 2483.
[10] For an unrelated synthesis of this compound, see: a) V. Raniyar, H. Zhai,
D. G. Hall, J. Am. Chem. Soc. 2008, 130, 8481; b) I. Cho, L. Meimetis,
R. Britton, Org. Lett. 2009, 11, 1903.
[11] a) J. E. McMurry, Chem. Rev. 1989, 89, 1513; b) P. Wyatt, S. Warren,
M. McPartlin, T. Woodroffe, J. Chem. Soc. Perkin Trans. 1 2001, 3, 279.
[12] a) H. H. Fox, R. R. Schrock, R. O’Dell, Organometallics 1994, 13, 635; b)
S. Chang, Y. Na, H. J. Shin, E. Choi, L. S. Jeong, Tetrahedron Lett. 2002,
43, 7445.
[13] C. Rosini, L. Franzini, D. Pini, P. Salvadori, Tetrahedron: Asymmetry 1990,
1, 587.
[14] K. R. K. Prasad, N. N. Joshi, Tetrahedron: Asymmetry 1996, 7, 1957.
[15] A. Zhang, L. Yang, N. Yang, Y. Liu, Tetrahedron: Asymmetry 2014,
25, 389.
Acknowledgements
This study was supported by the Scientific & Technological Re-
search Council of Turkey (TUBITAK; project no. TBAG-112T017)
and the Research Fund of Osmaniye Korkut Ata University (project
no. OKUBAP-2013-PT3-004).
[16] a) F.-Y. Zhang, C.-W. Yip, R. Cao, A. S. C. Chan, Tetrahedron: Asymmetry
1997, 8, 585; b) F. Lake, C. Moberg, Tetrahedron: Asymmetry 2001, 12,
755; c) J. Balsells, J. T. Davis, P. Carroll, P. J. Walsh, J. Am. Chem. Soc.
2002, 124, 10336.
References
Supporting Information
[1] a) M. Kitamura, S. Suga, K. Kawai, R. Noyori, J. Am. Chem. Soc. 1986, 108,
6071; b) K. Soai, S. Yokoyama, T. Hayasaka, J. Org. Chem. 1991, 56, 4264;
c) R. Noyori, M. Kitamura, Angew. Chem. Int. Ed. 1991, 30, 49; d) C. Bolm,
Additional supporting information may be found in the online ver-
sion of this article at the publisher’s web-site.
wileyonlinelibrary.com/journal/aoc
Copyright © 2014 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2014, 28, 835–838