Y. J. Kim, R. S. Varma / Tetrahedron Letters 46 (2005) 1467–1469
1469
in a crude mixture of liquid and a small quantityof
unreacted InCl3, which was filtered using a syringe filter
to afford colorless single phased liquid. This liquid was
fullycharacterized byNMR spectroscopyand TGA
analysis. The bulk temperature recorded was in the
range 60–80 ꢁC. The same experiment via conventional
heating (glycerol bath at 70 ꢁC for 1 h) resulted onlyin
73% yield. An experiment on a relatively large scale
starting from 30 mmol of indium trichloride and
30 mmol of [C4mim]Cl afforded the same product (yield:
Research Laboratory, US Environmental Protection
Agency.
References and notes
1. For leading reviews, see: (a) Welton, T. Chem. Rev. 1999,
99, 2071; (b) Wasserscheid, P.; Keim, W. Angew. Chem.,
Int. Ed. 2000, 39, 3772; (c) Dupont, J.; de Souza, R. F.;
Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667; (d) Olivier-
Bourbigou, H.; Magna, L. J. Mol. Catal. A 2002, 182–183,
419; (e) Sheldon, R. Chem. Commun. 2001, 2399; (f) Zhao,
D.; Wu, M.; Kou, Y.; Min, E. Catal. Today 2002, 74, 157.
2. (a) Rogers, R. D.; Seddon, K. R. In Ionic Liquids as Green
Solvents: Progress and Prospects. ACS Symposium Series
856; American Chemical Society: Washington, DC, 2003;
(b) Rogers, R. D.; Seddon, K. R. Science 2003, 302, 792; (c)
Kim, D. W.; Song, C. E.; Chi, D. Y. J. Am. Chem. Soc.
2002, 124, 10278; (d) Grasa, G. A.; Viciu, M. S.; Huang, J.;
Zhang, C.; Trudell, M. L.; Nolan, S. P. Organometalics
2002, 21, 2866; (e) Bates, E. D.; Mayton, R. D.; Ntai, I.;
Davis, J. D., Jr. J. Am. Chem. Soc. 2002, 124, 926; (f)
Adams, C. J.; Earle, M. J.; Seddon, K. R. Chem. Commun.
1999, 1043; (g) Lee, H.; Kim, D. B.; Kim, S.-H.; Kim, H. S.;
Kim, S. J.; Choi, D. K.; Kang, Y. S.; Won, J. Angew.
Chem., Int. Ed. 2004, 43, 3053.
3. (a) Kim, H. S.; Kim, Y. J.; Lee, H.; Park, K. Y.; Lee, C.;
Chin, C. S. Angew. Chem., Int. Ed. 2002, 41, 4300; (b) Kim,
H. S.; Kim, Y. J.; Bae, J. Y.; Kim, S. J.; Lah, M. S.; Chin,
C. S. Organometallics 2003, 22, 2498; (c) Brown, R. J. C.;
Dyson, P. J.; Ellis, D. J.; Welton, T. Chem. Commun. 2001,
1862; (d) Kim, H. S.; Kim, J. J.; Kim, H.; Jang, H. G. J.
Catal. 2003, 220, 44; (e) Peng, J.; Deng, Y. New J. Chem.
2001, 25, 639; (f) Li, F.; Xiao, L.; Xia, C.; Hu, B.
Tetrahedron Lett. 2004, 45, 8307.
4. da Silveira Neto, B. A.; Ebeling, G.; Goncalves, R. S.;
Gozzo, F.; Eberlin, M. N.; Dupont, J. Synthesis 2004(8),
1155.
5. (a) Varma, R. S.; Namboodiri, V. V. Chem. Commun. 2001,
643; (b) Varma, R. S.; Namboodiri, V. V. Pure Appl. Chem.
2001, 73, 1309.
6. (a) Varma, R. S. In Green Chemistry: Challenging Perspec-
tives; Tundo, P., Anastas, P. T., Eds.; Oxford University
Press: Oxford, 2000; pp 221–244; (b) Varma, R. S. In Green
Chemical Synthesises and Processes. Anastas, P. T., Hein,
L. G., Williamson, T. C., Eds.; ACS Symposium Series
767; American Chemical Society: Washington, DC, 2001;
pp 292–312; (c) Varma, R. S. J. Heterocycl. Chem. 1999, 35,
1565; (d) Varma, R. S. Green Chem. 1999, 1, 43; (e) Varma,
R. S. Advances in Green Chemistry: Chemical Syntheses
Using Microwave Irradiation; AstraZeneca Research Foun-
dation: Bangalore, India, 2002. Free copyavailable on
request from: azrefi@astrazeneca.com; (f) Varma, R. S.
Pure Appl. Chem. 2001, 73, 1309.
1
93%; mp: À6 ꢁC). H NMR (300 MHz, D2O, 25 ꢁC): d
0.81 (t, 3J(H,H) = 7.2 Hz, 3H, CH3); 1.19 (m, 2H,
CH2); 1.72 (m, 2H, CH2); 3.79 (s, 3H, NCH3); 4.09 (t,
3J(H,H) = 7.6 Hz, 2H, NCH2); 7.30 (d, 3J(H,H) =
1.5 Hz, 2H, C3H3N2); 8.58 (s, 1H, C3H3N2). 13C NMR
(300 MHz, D2O, 25 ꢁC): d 12.6 (CH3); 18.7 (CH2);
31.2 (CH2); 35.7 (NCH3); 49.3 (NCH2); 122.2
(C3H3N2); 123.5 (C3H3N2); 135.8 (C3H3N2).
5. Tetrahydropyranyl (THP) ethers—general procedure
The experimental set-up for the MW experiment was the
commerciallyavailable ÔDiscover Focused Microwave
Synthesis SystemÕ from CEM Corporation, with a
proper temperature and a pressure control.8 In a typical
procedure, a mixture of benzyl alcohol (10 mmol), 3,4-
dihydro-2H-pyran (11 mmol), and [C4mim][InCl4]
(2.5 mmol) was charged in a round-bottom glass flask
(50 mL) containing a magnetic stirring bar and a reflux
condenser. The flask was placed in the microwave cav-
ity, which is designed to house a round-bottom flask.
The flask was subjected to MW irradiation at 60 ꢁC
(power 100 W) for a specified period. After completion
of the reaction, the flask was removed and cooled to
room temperature. The progress of the reaction was fol-
lowed using GC–MS and the disappearance of the signal
for the starting alcohol in the GC determined the com-
pletion of reaction. The product was extracted with
ether and filtered through the short silica column to re-
move anyimpurities. The residual 3,4-dihydro-2 H-pyr-
an and solvent were removed on a rotaryevaporator
followed byvacuum drying to afford THP-ether (79%
yield).
Acknowledgements
We wish to thank Tom Deinlein, Julius Enriquez, Albert
Foster, and AmyZhao for their assistance. This re-
search was performed while the author held a National
Research Council Research Associateship Award at
Clean Processes Branch, National Risk Management
7. Greene, T. W.; Wuts, P. G. M. Protective Groups in
Organic Synthesis, 2nd ed.; John Wiley& Sons Inc.:
New York, 1999.
8. Kim, Y. J.; Varma, R. S. Tetrahedron Lett. 2004, 45,
7205.