Organic Letters
Letter
Y. J. Am. Chem. Soc. 2013, 135, 7851−7854. (i) Kaschel, J.; Schneider,
T. F.; Kratzert, D.; Stalke, D.; Werz, D. B. Angew. Chem., Int. Ed. 2012,
51, 11153−11156. (j) Zhou, Y.-Y.; Wang, L.-J.; Li, J.; Sun, X.-L.; Tang,
Y. J. Am. Chem. Soc. 2012, 134, 9066−9069. (k) Xing, S.; Li, Y.; Li, Z.;
Liu, C.; Ren, J.; Wang, Z. Angew. Chem., Int. Ed. 2011, 50, 12605−
12609. (l) Moran, J.; Smith, A. G.; Carris, R. M.; Johnson, J. S.;
Krische, M. J. J. Am. Chem. Soc. 2011, 133, 18618−18621. (m) Ivanova,
O. A.; Budynina, E. M.; Chagarovskiy, A. O.; Trushkov, I. V. J. Org.
Chem. 2011, 76, 8852−8868. (n) Gorbacheva, E. O.; Tabolin, A. A.;
Novikov, R. A.; Khomutova, Y. A.; Nelyubina, Y. V.; Tomilov, Y. V.;
Ioffe, S. L. Org. Lett. 2013, 15, 350−353. (o) Ivanova, O. A.; Budynina,
E. M.; Grishin, Y. K.; Trushkov, I. V.; Verteletskii, P. V. Angew. Chem.,
Int. Ed. 2008, 47, 1107−1110.
(4) For cyclopropane rearrangements, see: (a) Rubin, M.; Rubina,
M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117−3179. (b) Baldwin, J.
E. Chem. Rev. 2003, 103, 1197−1212. (c) Rawal, V. H.; Michoud, C.;
Monestel. J. Am. Chem. Soc. 1993, 115, 3030−3031. (d) Goldschmidt,
Z.; Crammer, B. Chem. Soc. Rev. 1988, 17, 229−267.
(5) (a) Chusov, D.; List, B. Angew. Chem., Int. Ed. 2014, 53, 5199−
5201. (b) Kolesnikov, P. N.; Usanov, D. L.; Barablina, E. A.; Maleev,
V. I.; Chusov, D. Org. Lett. 2014, 16, 5068−5071. (c) Kolesnikov, P.
N.; Yagafarov, N. Z.; Usanov, D. L.; Maleev, V. I.; Chusov, D. Org.
Lett. 2015, 17, 173−175. (d) Yagafarov, N. Z.; Kolesnikov, P. N.;
Usanov, D. L.; Novikov, V. V.; Nelyubina, Y. V.; Chusov, D. Chem.
Commun. 2016, 52, 1397−1400.
(6) Afanasyev, O. I.; Tsygankov, A. A.; Usanov, D. L.; Perekalin, D.
S.; Shvydkiy, N. V.; Maleev, V. I.; Kudinov, A. R.; Chusov, D. ACS
Catal. 2016, 6, 2043−2046.
(7) For state-of-the-art examples of reductive application CO in the
water−gas shift reaction in organic chemistry, see: (a) Ambrosi, A.;
Denmark, S. E. Angew. Chem., Int. Ed. 2016, 55, 12164−12189.
(b) Denmark, S. E.; Matesich, Z. D. J. Org. Chem. 2014, 79, 5970−
5986. (c) Denmark, S. E.; Nguyen, S. T. Org. Lett. 2009, 11, 781−784.
(d) Kondo, T.; Ono, H.; Satake, N.; Mitsudo, T.; Watanabe, Y.
Organometallics 1995, 14, 1945−1953. (e) Tsuji, Y.; Mukai, T.; Kondo,
T.; Watanabe, Y. J. Organomet. Chem. 1989, 369, C51−C53.
(f) Kaneda, K.; Mori, T.; Kobayashi, M.; Imanaka, T.; Teranishi, S.
Chem. Lett. 1985, 14, 1339−1342. (g) Radhi, M. A.; Palyi, G.; Marko,
L. J. Mol. Catal. 1983, 22, 195−203. (h) Kaneda, K.; Yasumura, M.;
Imanaka, T.; Teranishi, S. J. Chem. Soc., Chem. Commun. 1982, 935−
936. (i) Sugi, Y.; Matsuda, A.; Bando, K.-i.; Murata, K. Chem. Lett.
1979, 8, 363−364. (j) Watanabe, Y.; Yamamoto, M.; Mitsudo, T.-a.;
Takegami, Y. Tetrahedron Lett. 1978, 19, 1289−1290.
context can be useful for the synthesis of bidentate ligands. The
reaction was scaled up to 2 mmol without any erosion of the
Likewise, a useful preparative profile was observed for the
Rh-catalyzed protocol. Various products 2a−g were successfully
isolated in good yields (Figure 1).
Investigation of the mechanistic details of the described
processes is beyond the scope of this paper. However, schemes
of possible mechanisms are provided in the Supporting
In summary, we have developed highly efficient orthogonal
methodologies for a novel one-step preparation of pyrrolidines
or traditional preparation of cyclopropyl-substituted amines via
reductive amination; the direction of the process can be altered
by simply changing the catalyst from ruthenium trichloride to
rhodium acetate. The reactions do not require an external
hydrogen source or any ligands and employ the unique
properties of carbon monoxide as a deoxygenative agent, which
renders our methodologies more atom-economical in compar-
ison to the existing synthetic alternatives.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Detailed experimental procedures and full spectroscopic
data for all new compounds (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Present Address
†(D.L.U.) Harvard University, Department of Chemistry and
Chemical Biology, 12 Oxford Street, Cambridge, MA 02138.
Notes
The authors declare no competing financial interest.
(8) For other applications of carbon monoxide as a reducing agent,
see: (a) Li, H.-Q.; Liu, X.; Zhang, Q.; Li, S.-S.; Liu, Y.-M.; He, H.-Y.;
Cao, Y. Chem. Commun. 2015, 51, 11217−11220. (b) Park, J. W.;
Chung, Y. K. ACS Catal. 2015, 5, 4846−4850.
ACKNOWLEDGMENTS
■
The work was financially supported by the Russian Science
Foundation (Grant No. 16-13-10393). We gratefully acknowl-
edge Dr. Rinat Salikov for the cyclopropyl starting materials.
(9) For synthesis of pyrrolidines, see: (a) Bhat, C.; Tilve, S. G. RSC
Adv. 2014, 4, 5405−5452. (b) Huang, W.; O’Donnell, M.-M.; Bi, G.;
Liu, J.; Yu, L.; Baldino, C. M.; Bell, A. S.; Underwood, T. J.
Tetrahedron Lett. 2004, 45, 8511−8514. (c) Bertozzi, F.; Gustafsson,
M.; Olsson, R. Org. Lett. 2002, 4, 3147−3150. (d) Yus, M.; Soler, T.;
Foubelo, F. J. Org. Chem. 2001, 66, 6207−6208. (e) Mitchenson, A.;
Nadin, A. J. Chem. Soc., Perkin Trans. 1 2000, 2862−2892. (f) Pichon,
M.; Figadere, B. Tetrahedron: Asymmetry 1996, 7, 927−964. (g) Blake,
K. W.; Gillies, L. J. Chem. Soc., Perkin Trans. 1 1981, 1, 700−702.
(h) Breuer, E.; Zbaida, S. Tetrahedron 1975, 31 (6), 499−504.
(10) For example, rhodium(II) acetate dimer and ruthenium(III)
trichloride hydrate (1 g, >99.98% trace metal basis) can be purchased
from Sigma-Aldrich for $1050 and $59, respectively.
REFERENCES
■
(1) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed.
2014, 53, 5504−5523.
(2) (a) Reissig, H.-U.; Hirsch, E. Angew. Chem., Int. Ed. Engl. 1980,
19, 813−814. (b) Bohm, I.; Hirsch, E.; Reissig, H.-U. Angew. Chem.,
Int. Ed. Engl. 1981, 20, 574.
(3) (a) Sabbatani, J.; Maulide, N. Angew. Chem., Int. Ed. 2016, 55,
6780−6783. (b) Budynina, E. M.; Ivanov, K. L.; Chagarovskiy, A. O.;
Rybakov, V. B.; Trushkov, I. V.; Melnikov, M. Ya. Chem. - Eur. J. 2016,
22, 3692−3696. (c) Xu, H.; Hu, J.-L.; Wang, L.; Liao, S.; Tang, Y. J.
Am. Chem. Soc. 2015, 137, 8006−8009. (d) Novikov, R. A.; Tarasova,
A. V.; Korolev, V. A.; Shulishov, E. V.; Timofeev, V. P.; Tomilov, Y. V.
J. Org. Chem. 2015, 80, 8225−8235. (e) Novikov, R. A.; Tarasova, A.
V.; Korolev, V. A.; Timofeev, V. P.; Tomilov, Y. V. Angew. Chem., Int.
Ed. 2014, 53, 3187−3191. (f) Xu, H.; Qu, J.-P.; Liao, S.; Xiong, H.;
Tang, Y. Angew. Chem., Int. Ed. 2013, 52, 4004−4007. (g) Ivanova, O.
A.; Budynina, E. M.; Skvortsov, D. A.; Limoge, M.; Bakin, A. V.;
Chagarovskiy, A. O.; Trushkov, I. V.; Melnikov, M.Ya. Chem. Commun.
2013, 49, 11482−11484. (h) Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang,
C
Org. Lett. XXXX, XXX, XXX−XXX