Pd3(dppm)3(CO)(Cl)+ + Cu - e- f
Pd3(dppm)3(CO)2+ + CuCl(s) (4)
SCHEME 1
Combining reactions 2 and 4 provides the catalytic
cycle depicted in Scheme 1, which results in the selective
formation of the acylium cation from the acyl chloride.
The overall reaction can be written as follows (eq 5),
where the precipitation of CuCl constitutes the driving
force of the whole process:
2+
RC(O)Cl + Cu(s) - e- Pd3 (cat.)8 “RCO+” + CuCl(s) (5)
As a typical example, when the Pd32+ is introduced into
the solution together with an excess of acid chloride (100
molar equiv), using various derivatives (such as R ) Ph,
t-Bu, or n-C6H13), polarizing the copper electrode gener-
ates a strong current, which indicates an increase of
electron flow. The latter drops to zero after the quantity
of current passed has nearly reached the amount of acid
chloride initially introduced. The CuCl produced through-
out the electrolysis was quantified, giving a quantitative
yield with respect to the electrolyzed acid chloride.8 This
catalytic system can be of great utility in acylation
reactions. Two synthetic applications are selected: the
synthesis of fluoro acid,9 and conversion of alcohols in
esters via O-acylation.10
F lu or in a tion . These compounds find numerous im-
portant applications in organic synthesis.9,11 Generally,
acid fluorides are prepared from halide exchange with
the corresponding acid chloride12 with the use of a
fluorinating agent such as KF,13 KF/HF,14 HF,15 SbF3,16
BrF3,17 and ZrF2.18 These reactions require high temper-
TABLE 1. F lu or in a tion (En tr ies 1-4) a n d Alcoh olysis
2+
(En tr ies 5-12) of Acid Ch lor id es Ca ta lyzed by P d 3 (1%
Mol) u n d er Oxid a tion w ith a Cop p er An od ea
acid
chloride
Qb
nucleophile (F/mol) yieldc (%) yieldd (%)
chemical
faradic
entry
1
2
3
4
5
6
7
8
9
PhCOCl
PhCOCl
t-BuCOCl
n-C6H13COCl Bu4NPF6
PhCOCl
PhCOCl
t-BuCOCl
n-C6H13COCl EtOH
PhCOCl
Bu4NPF6
Bu4NBF4
Bu4NBF4
0.98
0.90
0.88
0.89
0.88
0.84
0.85
0.93
0.81
0.84
0.86
0.81
98
86
86
86
84
78
80
85
80
80
100
96
98
97
95
93
94
91
99
95
MeOH
EtOH
EtOH
i-PrOH
10 PhCOCl
11 PhCOCl
12 PhCOCl
sec-BuOH
t-BuOH
t-BuOH
0e
78f
0e
96f
a
See the general procedure in the Experimental Section.
Determined per mol of RCOCl, after the current had dropped to
b
zero; the nonstoichiometric amount of electricity (relative to the
quantity of acid chloride) can be explained by the passivation of
the copper anode, which appears at the end of the electrolysis,
recovered with cuprous chloride. b Determined by GC/MS (internal
d
standard method). Faradic yield ) chemical yield/Q. e No more
(8) As a blank experiment, we have verified that no current was
detected when the Pd32+ was not present in solution, other conditions
being unchanged. All in all, Pd32+ acts as an halide-transfer agent from
the organic molecule to the electrode.
ester was found when the same experiment was conducted with
excess alcohol (10 equiv relative to PhCOCl). f Conducted in an
undivided cell.
(9) (a) Carpino, L. A.; Sadat-Aalaee, H. G.; Chao, H. G.; Deselms,
R. H. J . Am. Chem. Soc. 1990, 112, 9651. (b) Bertho, J . N.; Loffet, A.;
Pinel, C.; Reuther, F.; Sennyey, G. Tetrahedron Lett. 1991, 32, 1303.
(c) Wenschuh, H.; Beyermann, M.; Krause, E.; Brudel, M.; Winter, R.;
Schu¨mann, M.; Carpino, L. A., Bienert, M. J . Org. Chem. 1994, 59,
3275.
ature, which is rather inconvenient for polyfunctional
systems. No catalyst is known for such a reaction.
By using a fluorinated supporting electrolyte, i.e.,
Bu4NPF6 (Table 1, entries 1 and 4) or Bu4NBF4 (Table
1, entries 2 and 3), the acid chloride is readily and
quantitatively converted into the corresponding fluoride
(Table 1 and eq 6):
(10) Carey, F. A.; Sundberg, R. J . Advanced Organic Chemistry, 3rd
ed.; Plenum Press: New York, 1990; Vol. I, 475.
(11) (a) Ramig, K.; Kudzma, L. V.; Lessor, R. A.; Rozov, L. A. J .
Fluorine Chem. 1999, 94, 1 and references therein. (b) Hudlicky, M.;
Pavlath, A. E. Chemistry of Organic Fluorine Compounds II: A Critical
Review; American Chemical Society: Washington, DC, 1995.
(12) (a) Hasek, W. R.; Smith, W. C.; Engelhardt, V. A. J . Am. Chem.
Soc. 1960, 82, 543. (b) Bloshchitsa, F. A.; Burmakov, A. I.; Kunshenko,
B. V.; Alekseeva, L. A.; Yagupol’skii, L. M. J . Org. Chem. USSR (Engl.
Trans.) 1985, 21, 1286. (c) Ritter, S. K.; Hill, B. K.; Odian, M. A.; Dai,
J .; Noftle, R. E.; Gard, G. L. J . Fluorine Chem. 1999, 93, 73.
(13) (a) Saunders: S. J . Chem. Soc. 1948, 1778. (b) Haszeldine N.
J . Chem. Soc. 1959, 1084. (c) Pittman, A. G.; Sharp, D. L. J . Org. Chem.
1966, 31, 2316. (d) 18-Crown-6 complex: Liotta, C. L.; Harris, H. P. J .
Am. Chem. Soc. 1974, 96, 2250. (e) Ishikawa, N.; Kitazume, T.;
Yamazaki, T.; Mochida, Y.; Tatsuno, T. Chem. Lett. 1981, 761. (f)
Tordeux, M.; Wakselman, C. Synth. Commun. 1982, 12, 513. (g) Clark,
J . H.; Hyde, A. J .; Smith, D. K. J . Chem. Soc., Chem. Commun. 1986,
10, 791. (h) Liu, H.; Wang, P.; Sun, P. J . Fluorine Chem. 1989, 43,
429. (i) Krespan, C. G.; Dixon, D. A. J . Org. Chem. 1991, 56, 3915.
(14) (a) Olah G. A.; Kuhn, S.; Beke, S. Chem. Ber. 1956, 89, 862. (b)
Miller, J .; Ying, O.-L. J . Chem. Soc., Perkin Trans. 2 1985, 325.
(15) (a) Young, D. J . Org. Chem. 1959, 24, 1021. (b) Olah, G. A.;
Welch, J . T.; Vankar, Y. D.; Nojima, M.; Kerekes, I.; Olah, J . A. J .
Org. Chem. 1979, 44, 3872. (c) Abe, T.; Hayashi, E.; Baba, H.; Nagase,
S J . Fluorine Chem. 1984, 25, 419.
2+
cat.: Pd3 (1%)
R(C)Cl + “F-” + Cu - e-
8
CH2Cl2
0.2M Bu4NPF6 or Bu4NBF4
RC(O)F + CuCl(s) (6)
The proposed mechanism involves the abstraction of
-
-
a F- from the PF6 or BF4 anion by the strongly
electrophilic acylium ion.19
Alcoh olysis. The conversion of alcohols into esters is
of fundamental importance in organic synthesis.10 The
(17) Rozen, S.; Ben-David, I. J . Fluorine Chem. 1996, 76, 145.
(18) (a) Blicke, F. F. J . Am. Chem. Soc. 1924, 46, 1516. (b) Swain,
S. J . Am. Chem. Soc. 1953, 75, 246. (c) Nenajdenko, V. G.; Lebedev,
M. V.; Belenkova, E. S. Tetrahedron Lett. 1995, 36, 6317.
(19) (a) J ordan, R. F., Dasher, W. E., Echols, S. F. J . Am. Chem.
Soc. 1986, 108, 1718. (b) Bochmann, M., Wilson, L. M. Organometallics
1987, 6, 2556. (c) Gorell, I. B., Parkin, G. Inorg. Chem. 1990, 29, 2452.
(16) Meerwein, H.; Borner, P.; Fuchs, O.; Sasse, H. J .; Schrodt, H.;
Spille, J . Chem. Ber. 1956, 89, 2060.
7538 J . Org. Chem., Vol. 67, No. 21, 2002