RSC Advances
Paper
improving their catalytic stability and efficiency. The synthetic
method could be extended to synthesize other mesoporous
core–shell structures. Importantly, this study provides a catalyst
design using the mesoporous core–shell structure to improve
the catalytic stability and bimetallic or metal–oxide hetero-
9 J. P. Zimmer, S. W. Kim, S. Ohnishi, E. Tanaka,
J. V. Frangioni and M. G. Bawendi, Size series of small
indium arsenide–zinc selenide core–shell nanocrystals and
their application to in vivo imaging, J. Am. Chem. Soc.,
2006, 128, 2526–2527.
aggregate structures to improve catalytic hydrogenation selec- 10 A. Cao, R. Lu and G. Veser, Stabilizing metal nanoparticles
tivity, and could be extended to other catalytic systems.
for heterogeneous catalysis, Phys. Chem. Chem. Phys., 2010,
12, 13499–13510.
11 S. H. Joo, J. Y. Park, C. K. Tsung, Y. Yamada, P. D. Yang and
G. A. Somorjai, Thermally stable Pt/mesoporous silica core–
shell nanocatalysts for high-temperature reactions, Nat.
Mater., 2009, 8, 126–131.
Conflicts of interest
The authors declare no competing nancial interest.
12 S. Poovarodom, J. D. Bass, S. J. Hwang and A. Katz,
Investigation of the core–shell interface in gold@silica
nanoparticles: A silica imprinting approach, Langmuir,
2005, 21, 12348–12356.
13 Y. J. Baek, Q. Hu, J. W. Yoo, Y. J. Choi, C. J. Kang, H. H. Lee,
S. H. Min, H. M. Kim, K. B. Kim and T. S. Yoon, Tunable
threshold resistive switching characteristics of Pt–Fe2O3
core–shell nanoparticle assembly by space charge effect,
Nanoscale, 2013, 5, 772–779.
Acknowledgements
S. Zhou thanks the Ministry of Science and Technology of China
(Grant no. 2012DFA40550) for nancial supports. H. Yu thanks
the nancial support from Ningbo Municipal Natural Science
Foundation (Grant No. 2013A610038). H. Liu thanks Hainan
University for nancial supports of development plan of
outstanding graduate thesis.
14 P. Du, Y. H. Cao, D. Li, Z. Y. Liu, X. G. Kong and Z. C. Sun,
Synthesis of thermally stable Ag@TiO2 core–shell
nanoprisms and plasmon-enhanced optical properties for
a P3HT thin lm, RSC Adv., 2013, 3, 6016–6021.
References
1 M. Zhao, K. Deng, L. He, Y. Liu, G. Li, H. Zhao and Z. Tang,
Core–shell
palladium
nanoparticle@metal–organic 15 X. G. Liu, G. P. Zhou, S. Wing and Y. P. Sun, Fe/amorphous
frameworks as multifunctional catalysts for cascade
reactions, J. Am. Chem. Soc., 2014, 136, 1738–1741.
2 Q. Zhang, I. Lee, J. B. Joo, F. Zaera and Y. D. Yin, Core–Shell
SnO2 core–shell structured nanocapsules for microwave
absorptive and electrochemical performance, RSC Adv.,
2014, 4, 51389–51394.
Nanostructured Catalysts, Acc. Chem. Res., 2013, 46, 1816– 16 C. M. Y. Yeung and S. C. Tsang, Noble Metal Core–Ceria Shell
1824.
Catalysts For Water–Gas Shi Reaction, J. Phys. Chem. C,
2009, 113, 6074–6087.
3 K. A. Kuttiyiel, K. Sasaki, Y. M. Choi, D. Su, P. Liu and
R. R. Adzic, Nitride Stabilized PtNi Core–Shell Nanocatalyst 17 T. Liu, D. S. Li, Y. Zou, D. R. Yang, H. L. Li, Y. M. Wu and
for high Oxygen Reduction Activity, Nano Lett., 2012, 12,
6266–6271.
4 Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima and
M. H. Jiang, Preparation of metal@silica core–shell
particle lms by interfacial self-assembly, J. Colloid
Interface Sci., 2010, 350, 58–62.
Y. Maeda, Characterization and catalytic activity of core– 18 Y. Qi, M. Chen, S. Liang, J. Zhao and W. Yang,
shell structured gold/palladium bimetallic nanoparticles
synthesized by the sonochemical method, J. Phys. Chem. B,
2000, 104, 6028–6032.
5 M. Raula, D. Maity, M. H. Rashid and T. K. Mandal, In situ
formation of chiral core–shell nanostructures with
raspberry-like gold cores and dense organic shells using
Hydrophobation and self-assembly of core–shell Au@SiO2
nanoparticles, Colloids Surf., A, 2007, 302, 383–387.
19 N. Zhang and Y. J. Xu, Aggregation- and Leaching-Resistant,
Reusable, and Multifunctional Pd@CeO2 as a Robust
Nanocatalyst Achieved by a Hollow Core–Shell Strategy,
Chem. Mater., 2013, 25, 1979–1988.
catechin and their catalytic application, J. Mater. Chem., 20 L. Adijanto, D. A. Bennett, C. Chen, A. S. Yu, M. Cargnello,
2012, 22, 18335.
P. Fornasiero, R. J. Gorte and J. M. Vohs, Exceptional
Thermal Stability of Pd@CeO2 Core–Shell Catalyst
Nanostructures Graed onto an Oxide Surface, Nano Lett.,
2013, 13, 2252–2257.
6 C. Y. Chiu and M. H. Huang, Polyhedral Au–Pd core–shell
nanocrystals as highly spectrally responsive and reusable
hydrogen sensors in aqueous solution, Angew. Chem., Int.
Ed. Engl., 2013, 52, 12709–12713.
¨
21 W. Stober, A. Fink and E. Bohn, Controlled Growth of
7 H. Kobayashi, M. Yamauchi, H. Kitagawa, Y. Kubota, K. Kato
and M. Takata, Hydrogen absorption in the core–shell
Monodisperse Silica Spheres in Micron Size Range,
J. Colloid Interface Sci., 1968, 26, 62–69.
interface of Pd/Pt nanoparticles, J. Am. Chem. Soc., 2008, 22 L. L. Hench and J. K. West, The Sol–Gel Process, Chem. Rev.,
130, 1818–1819.
1990, 90, 33–72.
8 V. Salgueirino-Maceira and M. A. Correa-Duarte, Increasing 23 Y. B. Hu, K. Tao, C. Z. Wu, C. Zhou, H. F. Yin and S. H. Zhou,
the complexity of magnetic core–shell structured
nanocomposites for biological applications, Adv. Mater.,
2007, 19, 4131–4144.
Size-Controlled Synthesis of Highly Stable and Active
Pd@SiO2 Core–Shell Nanocatalysts for Hydrogenation of
Nitrobenzene, J. Phys. Chem. C, 2013, 117, 8974–8982.
20246 | RSC Adv., 2015, 5, 20238–20247
This journal is © The Royal Society of Chemistry 2015