LETTER
Conversion of Arylboronic Acids into Phenols
501
(c) George, T.; Mabon, R.; Sweeney, G.; Sweeney, J. B.;
Tavassoli, A. J. Chem. Soc., Perkin Trans. 1 2000, 2529.
(d) Schulz, T.; Torborg, C.; Schaffner, B.; Huang, J.; Zapf,
A.; Kadyrov, R.; Borner, A.; Beller, M. Angew. Chem. Int.
Ed. 2009, 48, 918. (e) Sergeev, A. G.; Schulz, T.; Torborg,
C.; Spannenberg, A.; Neumann, H.; Beller, M. Angew.
Chem. Int. Ed. 2009, 48, 7595. (f) Willis, M. C. Angew.
Chem. Int. Ed. 2007, 46, 3402. (g) Chen, G.; Chan, A. S. C.;
Kwong, F. Y. Tetrahedron Lett. 2007, 48, 473. (h) Gallon,
B. J.; Kojima, R. W.; Kaner, R. B.; Diaconescu, P. L. Angew.
Chem. Int. Ed. 2007, 46, 7251. (i) Anderson, K. W.; Ikawa,
T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006,
128, 10694. (j) Tilli, A.; Xia, N.; Monnier, F.; Taillefer, M.
Angew. Chem. Int. Ed. 2009, 48, 8725. (k) Zhao, D.; Wu, N.;
Zhang, S.; Xi, P.; Su, X.; Lan, J.; You, J. Angew. Chem. Int.
Ed. 2009, 48, 8729.
B(OH)2
OH
MCPBA, H2O–EtOH (1:2)
N2, 6 h, r.t.
2a 98% yield
1a
Scheme 3
the oxidative hydroxylation of phenylboronic acid was
hypothesized (Scheme 4), as suggested by the recently re-
ported work on the mechanism studies of the aerobic oxi-
dative hydroxylation of arylboronic acids through
photoredox catalysis.3d Firstly, 1a reacted with MCPBA
to generate the intermediate 3a, then rearrangement of 3a
afforded a phenolic species 4a. Finally, the hydroxylated
product 2a was obtained by hydrolysis of 4a.
(3) For some recent examples converting arylboronic acids into
phenols under metal catalysis, see: (a) Xu, J.; Wang, X.;
Shao, C.; Su, D.; Cheng, G.; Hu, Y. Org. Lett. 2010, 12,
1964. (b) Inamoto, K.; Nozawa, K.; Yonemoto, M.; Kondo,
Y. Chem. Commun. 2011, 47, 11775. (c) Yang, H.; Li, Y.;
Jiang, M.; Wang, J.; Fu, H. Chem. Eur. J. 2011, 17, 5652.
(d) Zou, Y.-Q.; Chen, J.-R.; Liu, X.-P.; Lu, L.-Q.; Davis, R.
L.; Jørgensen, K. A.; Xiao, W.-J. Angew. Chem. Int. Ed.
2012, 51, 784. Some recent examples without metal
catalysis, see: (e) Kianmehr, E.; Yahyaee, M.; Tabatabai, K.
Tetrahedron Lett. 2007, 48, 2713. (f) Travis, B. R.;
Ciaramitaro, B. P.; Borhan, B. Eur. J. Org. Chem. 2002,
3429. (g) Hawthorne, M. F. J. Org. Chem. 1957, 22, 1001.
(h) Prakash, G. K. S.; Chacko, S.; Panja, C.; Thomas, T. E.;
Gurung, L.; Rasul, G.; Mathew, T.; Olah, G. A. Adv. Synth.
Catal. 2009, 351, 1567. (i) Simon, J.; Salzbrunn, S.;
Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. J. Org. Chem.
2001, 66, 633. (j) Gogoi, A.; Bora, U. Synlett 2012, 23, 1079.
(k) Webb, K. S.; Levy, D. Tetrahedron Lett. 1995, 36, 5117.
(l) Hosoi, K.; Kuriyama, Y.; Inagi, S.; Fuchigami, T. Chem.
Commun. 2010, 46, 1284. (m) Nanni, E. J.; Sawyer, D. T. Jr.
J. Am. Chem. Soc. 1980, 102, 7591. (n) Fontani, P.; Carboni,
B.; Vaultier, M.; Maas, G. Synthesis 1991, 605.
HO
OH
B
MCPBA
B(OH)2
O
O
Cl
H
O
1a
3a
OH
OB(OH)2
H3O+
2a
4a
Scheme 4 The proposed mechanism of the reaction
In conclusion, a highly efficient synthesis of phenols7
from arylboronic acids has been developed by using
MCPBA as an oxidant. The process employed a mixture
of water and ethanol as the reaction medium. It is a mild
and simple reaction under metal-, ligand-, and base-free
conditions. Further investigations to determine the mech-
anism of the reaction and to expand their scope are under
way in our laboratory.
(o) Patcharin, K.; Ekasith, S.; Raghu, N. D.; Hidehiro, S.
Tetrahedron Lett. 2012, 53, 6104. (p) Naveen, M.; Ismail;
Kottur, M. K.; Rajesh, K. R.; Bhaskar, K.; Pallavi, R.;
Srinivas, O.; Manojit, P. Tetrahedron Lett. 2012, 53, 6004.
(4) (a) Swern, D. Organic Peroxides; Wiley: New York, 1971.
(b) Plesnicar, B. Organic Chemistry; Academic Press: New
York, 1978.
(5) Tap water was applied. The same results were obtained from
ultrapure water.
Acknowledgment
We are grateful for financial support from the National Natural Sci-
ence Foundation of China (Grant 20972055, 21172080) and the
Fundamental Research Funds for the Central Universities (Grant
2011ZZ0005).
(6) (a) Evans, D. A.; Katz, J. L.; West, T. R. Tetrahedron Lett.
1998, 39, 2937. (b) Lam, P. Y. S.; Bonne, D.; Vincent, G.;
Clark, C. G.; Combs, A. P. Tetrahedron Lett. 2003, 44, 1691.
(7) General Procedure for the Hydroxylation of
Phenylboronic Acid
To the mixture of phenylboronic acid (0.5 mmol) in a H2O–
EtOH (1:2) solution (2 mL) in a round-bottom flask was
added MCPBA (0.5 mmol) at r.t. When phenylboronic acid
was completely consumed (monitored by TLC, 6 h), 0.1 M
aq NaHCO3 (5 mL) was added to the mixture. Then the
reaction mixture was extracted with EtOAc (2 × 15 mL).
The combined organic layer was washed with H2O (10 mL)
and brine (5 mL), dried over anhyd MgSO4, filtered, and
concentrated in vacuo. The crude product was purified by
column chromatography on silica gel (PE–EtOAc = 4:1),
and the corresponding phenol was obtained as a colorless
solid (2a, 46 mg, 97%).
Supporting Information for this article is available online at
m
o
ti
References and Notes
(1) (a) Rappoport, Z. The Chemistry of Phenols; Wiley-VCH:
Weinheim, 2003. (b) Tyman, J. H. P. Synthetic and Natural
Phenols; Elsevier: New York, 1996.
(2) (a) Hoarau, C.; Pettus, T. R. R. Synlett 2003, 127.
(b) Hanson, P.; Jones, J. R.; Taylor, A. B.; Walton, P. H.;
Timms, A. W. J. Chem. Soc., Perkin Trans. 2 2002, 1135.
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 499–501