N. S. Gavande et al. / Tetrahedron 62 (2006) 4201–4204
4203
demonstrated chemoselectivity of ether cleavage without
any competitive conjugate addition.23,24
(MCK29); identical with an authentic sample.5g,35 The
remaining reactions were carried out following this general
procedure and the isolated product was purified either by
crystallization (MeOH) or passing through a column of
silica gel and eluting with eluting with hexane–EtOAc (9/1).
The physical data (mp, IR, NMR and MS) of 1-hydro-
xynaphthalene,35 4-chlorophenol,35 4-hydroxyaceto-
3. Conclusion
In conclusions, we have described Ph2S2–CaH2 in NMP as a
highly efficient protocol for in situ generation of thiophe-
nolate anion for chemoselective deprotection of aryl alkyl
ethers. We have demonstrated, for the first time, the use of
CaH2 as a reducing agent to generate thiolate anion from
disulfides. The mildness of CaH2 should find its application
in various other organic transformations.
phenone,35
3-hydroxyacetophenone,35
4-hydroxy-
benzaldehyde,35 4-cyanophenol,35 4-nitrophenol,35
1-phenyl-3-(4-hydroxyphenyl)-2-propenone5f and 1-(4-
hydroxyphenyl)-3-phenyl-2-propenone5f were in complete
agreement with those of authentic samples.
4. Experimental
4.1. General
References and notes
´
1. Basak (nee Nandi), A.; Nayak, M. K.; Chakraborti, A. K.
Tetrahedron Lett. 1998, 39, 4883–4886 and the references
therein.
1
The H and 13C spectra were recorded on Bruker Avance
DPX 300 (300 MHz) spectrometer in CDCl3 using TMS as
internal standard. The IR spectra were recorded on Nicolet
Impact 400 spectrometer as KBr pellets for solid and neat
for liquid samples. Mass spectra were recorded on QCP
5000 (Shimadzu) GCMS. The reactions were monitored by
TLC (Merck). Evaporation of solvents were performed
under reduced pressure using a Bu¨chi rotary evaporator.
Indium and calcium metals, 2-methoxynaphthalene,
4-methoxyacetophenone, 3-methoxyacetophenone, 4-meth-
oxybenzaldehyde were purchased from Aldrich,
India. Magnesium and iron metals, NaH, CaH2 and
N-methyl 2-pyrrolidone were from S-D Fine
Chemicals, India. 4-Methoxychlorobenzene,25 4-methoxy-
nitrobenzene,25 4-methoxybenzonitrile,25 2-ethoxy-
naphthalene,25 2-benzyloxynaphthalene,26 1-benzyloxy-
naphthalene,27 2-allyloxynaphthalene,28 1-allyloxy-
naphthalene,29 2-propynyloxynaphthalene,30 4-benzyl-
oxyacetophenone,31 4-allyloxyacetophenone,32 4-allyloxy-
benzonitrile,33 1-phenyl-3-(4-methoxyphenyl)-2-prope-
none34 and 1-(4-methoxyphenyl)-3-phenyl-2-propenone34
were prepared following reported procedures.
2. (a) Bhatt, M. V.; Kulkarni, S. U. Synthesis 1983, 249–282.
(b) Ranu, B. C.; Bhar, S. Org. Prep. Proced. Int. 1996, 28,
371–409. (c) Hwu, J. R.; Wong, F. F.; Huang, J.-J.; Tsay, S.-C.
J. Org. Chem. 1997, 62, 4097–4104. (d) Boovanahalli, S. K.;
Kim, D. W.; Chi, D. Y. J. Org. Chem. 2004, 69, 3340–3344.
3. (a) Maercker, A. Angew. Chem., Int. Ed. Engl. 1987, 26,
972–989. (b) Celina, M.; Azana, L. R. R.; Luisa, M.;
Franco, T. M. B.; Herold, B. J. J. J. Am. Chem. Soc. 1989,
111, 8640–8646. (c) Ohsawa, T.; Hatano, K.; Kayho, K.;
Kotabe, J.; Oishi, T. Tetrahedron Lett. 1992, 33, 5555–5558.
(d) Azzena, U.; Melloni, G.; Pisano, L. J. Chem. Soc., Perkin
Trans. 1 1995, 261–266. (e) Casado, F.; Pisano, L.; Farriol, M.;
Gallardo, I.; Marquet, J.; Melloni, G. J. Org. Chem. 2000, 65,
322–331.
4. (a) Caynon, E.; Marquet, J.; Lluch, J. M.; Martin, X. J. Am.
Chem. Soc. 1991, 113, 8970–8972. (b) Marquet, J.; Caynon, E.;
Martin, X.; Casado, F.; Gallardo, I.; Moreno, M.; Lluch, J. M.
J. Org. Chem. 1995, 60, 3814–3825.
5. (a) Huffman, J. W.; Joyner, H.; Lee, M. D.; Jordan, D.;
Pennington, W. T. J. Org. Chem. 1991, 56, 2081–2086.
(b) Huffman, J. W.; Yu, S.; Showalter, V.; Abood, M. E.;
Wiley, J. L.; Compton, D. R.; Martin, R.; Bramblett, R. D.;
Reggio, P. H. J. Med. Chem. 1996, 39, 3875–3877. (c) Myers,
A. G.; Tom, N. J.; Fraley, M. E.; Cohen, S. B.; Madar, D. J.
J. Am. Chem. Soc. 1997, 119, 6072–6094. (d) Nayak, M. K.;
Chakraborti, A. K. Tetrahedron Lett. 1997, 38, 8749–8752.
(e) Pinchart, A.; Dallaire, C.; Bierbeek, A. V.; Gingras, M.
Tetrahedron Lett. 1999, 40, 5479–5482. (f) Chakraborti, A. K.;
Sharma, L.; Nayak, M. K. J. Org. Chem. 2002, 67, 2541–2547.
(g) Chakraborti, A. K.; Sharma, L.; Nayak, M. K. J. Org.
Chem. 2002, 67, 6406–6414 and references therein.
6. (a) Hwu, J. R.; Tsay, S.-C. J. Org. Chem. 1990, 55, 5987–5991.
(b) Hwu, J. R.; Wong, F. F.; Shiao, M.-J. J. Org. Chem. 1992,
57, 5254–5255. (c) Shiao, M.-J.; Lai, L.-L.; Ku, W.-S.;
Lin, P.-Y.; Hwu, J. R. J. Org. Chem. 1993, 58, 4742–4744.
(d) Shiao, M.-J.; Ku, W.-S.; Hwu, J. R. Heterocycles 1993, 36,
323–328.
4.1.1. Representative experimental procedure. 2-
Methoxynaphthalene (1) (158 mg, 1 mmol) in NMP
(0.4 mL) was added to a magnetically stirred mixture of
Ph2S2 (130 mg, 0.6 mmol) and CaH2 (70 mg, 1.6 mmol) in
NMP (0.6 mL) under N2 and the mixture was heated under
reflux for 30 min. The cooled reaction mixture was diluted
with water (10 mL) and extracted with Et2O (3!10 mL) to
separate any neutral component. The combined ethereal
extracts were washed with 5% aqueous NaOH (10 mL) and
the alkaline washing was added to the aqueous portion. The
aqueous part was acidified in the cold (ice bath) with 6 N
HCl and extracted with Et2O (3!15 mL). The combined
ethereal extracts were washed with brine (15 mL), dried
(Na2SO4), and concentrated under vacuum to afford the
crude product which on crystallization (MeOH) afforded
2-hydroxynaphthalene (2) (115 mg, 80%). Mp 121 8C; IR
(KBr) cmK1
:
3300,1630, 1601; 1H NMR (CDCl3,
7. Chakraborti, A. K.; Sharma, L.; Nayak, M. K. J. Org. Chem.
2002, 67, 1776–1780.
300 MHz) d (ppm): 7.1 (dd, 1H, JZ2.5, 8.8 Hz), 7.18 (d,
1H, JZ2.5 Hz), 7.36 (ddd, 1H, JZ1.24, 6.88, 6.96 Hz),
7.46 (ddd, 1H, JZ1.2, 6.88, 6.92 Hz), 7.71 (d, 1H, JZ
8.28 Hz), 7.77–7.81 (m, 2H); MS (EI): m/zZ144 (MC), 115
8. Diphenyl disulfide is commercially available and an easily
handled solid, mp 58–60 8C.
9. Brown, H. C.; Nazer, B.; Cha, J. S. Synthesis 1984, 498–500.