10.1002/anie.201912367
Angewandte Chemie International Edition
RESEARCH ARTICLE
Acknowledgements
2[a]
3[a]
4[a]
5
5
5
100/>99
100/>99
100/>99
F
NO2
NO2
F
NH2
NH2
NH2
We thank the final supports by the National Key Research and
Development Program of China (Grant No. 2016YFB0701100),
National Natural Science Foundation of China (Grant Nos.
21835002 and 21621001) and the 111 Project (B17020). AM
and OT acknowledge to The Centre for High-resolution Electron
Microscopy (CħEM), supported by SPST of ShanghaiTech
University under contract No. EM02161943; NSFC NFSC-
21850410448. The APS was operated for the U.S. DOE Office
of Science by Argonne National Laboratory, and the CLS@APS
facilities (Sector 20) were supported by the U.S. DOE under
Contract No. DE-AC02-06CH11357, and the Canadian Light
Source and its funding partners.
Cl
Br
Cl
Br
NO2
NO2
H2N
NH2
NH2
NH2
5[a]
2
2
100/>99
100/>99
H2N
O2N
H3C
NO2 H2N
6[a]
NO2
7[a]
8[a]
10
60
100/>99
Trace
H3C
NO2
NH2
Conflict of interest
8[e]
60
Trace
CH3
CH3
The authors declare no conflict of interest.
9[a]
9[e]
9[f]
NH2
CH3
60
60
60
5
Trace
Trace
NO2
CH3
Keywords: heterogeneous catalysis • zeolites • hydrogen
generation • single-atom catalyst • tandem reaction
CH3
CH3
<3/>99
100/>99
9[h]
[1]
a) B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li,
T. Zhang, Nature Chem. 2011, 3, 634-641; b) X.-F. Yang, A. Wang, B.
Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740-1748; c) J.
Jones, H. Xiong, A. T. DeLaRiva, E. J. Peterson, H. Pham, S. R. Challa,
G. Qi, S. Oh, M. H. Wiebenga, X. I. Pereira Hernández, Y. Wang, A. K.
Datye, Science 2016, 353, 150-154; d) X. Li, W. Bi, L. Zhang, S. Tao,
W. Chu, Q. Zhang, Y. Luo, C. Wu, Y. Xie, Adv. Mater. 2016, 28, 2427-
2431; e) B. Zhang, H. Asakura, J. Zhang, J. Zhang, S. De, N. Yan,
Angew. Chem. 2016, 128, 8459-8463; Angew. Chem. Int. Ed. 2016, 55,
8319-8323; f) C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem. 2017,
129, 14132– 14148; Angew. Chem. Int. Ed. 2017, 56, 13944-13960; g)
Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang, Y. Li, Joule 2018, 2, 1242-
1264; h) Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan, Z. Yang, C. Zhao, J.
Wang, C. Zhao, X. Wang, F. Zhou, Z. Zhuang, Y. Wu, Y. Li, Nat. Catal.
2018, 1, 781-786; i) G. Sun, Z.-J. Zhao, R. Mu, S. Zha, L. Li, S. Chen, K.
Zang, J. Luo, Z. Li, S. C. Purdy, A. J. Kropf, J. T. Miller, L. Zeng, J.
Gong, Nat. Commun. 2018, 9, 4454; j) A. Wang, J. Li, T. Zhang, Nat.
Rev. Chem. 2018, 2, 65-81.
[a] Catalyst: Rh@S-1-H; [b] Catalyst: commercial Rh/C; Reaction condition of
a and b: 0.1 mmol of nitroarene, 1 mmol of NH3BH3, the ratio of Rh/substrate
is 0.011, MeOH/H2O = 8mL/10mL, 298 K; [c] Replacing NH3BH3 by 1 bar of
H2; [d] Without adding any catalyst; [e] Catalyst: Rh@ZSM-5-H (Si/Al = 105);
[f] Catalyst: Rh@S-1-C; [g] by using Rh@S-1-H as a catalyst after 5th cycles.
[h]
Catalyst: Rh/S-1-im; [i] All products were identified by gas
chromatography-mass spectrometry measurements.
Conclusion
In summary, single Rh atoms were successfully encapsulated
within MFI zeolites via a facile ligand-protected direct H2-
reduction method. Detailed Cs-corrected STEM, CO-DRIFTS,
and EXAFS measurements revealed the single-atom nature of
the embedded Rh atoms, which were located within sinusoidal
5-MRs and stabilized by zeolite framework oxygens of zeolite.
The Rh@S-1-H and Rh@ZSM-5-H (Si/Al =105) catalysts
exhibited superior H2 generation rate from AB hydrolysis,
affording TOF values of 432 and 699 molH2 mol−Rh1 min−1 at 298
K, respectively, representing the top level among all of the state-
of-the-art catalysts ever reported. Most significantly, the zeolite-
encaged single-atom metallic catalyst exhibited superior
efficiency in tandem hydrogenation of nitroarenes by coupling
with AB hydrolysis; meanwhile, these catalysts afforded shape
selectivity for various nitroarenes and showed excellent
recycling stability. This work not only demonstrates the zeolites
are an ideal supports for encaging single metal atoms with the
excellent stability and catalytic activity, but also open up new
perspectives for the application of such catalysts in shape-
selective tandem catalytic reactions.
[2]
a) J. Lu, C. Aydin, N. D. Browning, B. C. Gates, Angew. Chem. 2012,
124, 5944-5948; b) J. D. Kistler, N. Chotigkrai, P. Xu, B. Enderle, P.
Praserthdam, C.-Y. Chen, N. D. Browning, B. C. Gates, Angew. Chem.
2014, 126, 9050-9053; Angew. Chem. Int. Ed. 2014, 53, 8904-8907; c)
C. Dai, A. Zhang, M. Liu, X. Guo, C. Song, Adv. Funct. Mater. 2015, 25,
7479-7487; d) T.-L. Cui, W.-Y. Ke, W.-B. Zhang, H.-H. Wang, X.-H. Li,
J.-S. Chen, Angew. Chem. 2016, 128, 9324-9328; Angew. Chem. Int.
Ed. 2016, 55, 9178-9182; e) L. Liu, U. Díaz, R. Arenal, G. Agostini, P.
Concepción, A. Corma, Nat. Mater. 2017, 16, 132-138; f) C. Wang, L.
Wang, J. Zhang, H. Wang, J. P. Lewis, F.-S. Xiao, J. Am. Chem. Soc.
2016, 138, 7880-7883; g) N. Wang, Q. Sun, R. Bai, X. Li, G. Guo, J. Yu,
J. Am. Chem. Soc. 2016, 138, 7484-7487; h) J. Shan, M. Li, L. F. Allard,
S. Lee, M. Flytzani-Stephanopoulos, Nature 2017, 551, 605; i) Q. Sun,
N. Wang, Q. Bing, R. Si, J. Liu, R. Bai, P. Zhang, M. Jia, J. Yu, Chem
2017, 3, 477-493; j) Y. Liu, Z. Li, Q. Yu, Y. Chen, Z. Chai, G. Zhao, S.
Liu, W.-C. Cheong, Y. Pan, Q. Zhang, L. Gu, L. Zheng, Y. Wang, Y. Lu,
D. Wang, C. Chen, Q. Peng, Y. Liu, L. Liu, J. Chen, Y. Li, J. Am. Chem.
Soc. 2019, 141, 9305-9311; k) N. Wang, Q. Sun, J. Yu, Adv. Mater.
2019, 31, 1803966; l) L. Wang, S. Xu, S. He, F.-S. Xiao, Nano Today
2018, 20, 74-83; m) L. Liu, A. Corma, Chem. Rev. 2018, 118, 4981-
5079; n) L. Liu, M. Lopez-Haro, C. W. Lopes, C. Li, P. Concepcion, L.
Simonelli, J. J. Calvino, A. Corma, Nat. Mater. 2019, 18, 866-873.
This article is protected by copyright. All rights reserved.