A. R. Hajipour et al.
1
NMR spectroscopy. H NMR spectra were recorded at 400 MHz
References
and 13C NMR spectra were recorded at 100 MHz (Bruker) with
CDCl3 or DMSO-d6 as solvent. Chemical shifts were measured
using tetramethylsilane as internal standard. FT-IR spectra were
obtained with samples as KBr pellets using a JASCO 680-Plus
spectrophotometer. Also, we used gas chromatography (Beifin
3420 gas chromatograph equipped with a Varian CP SIL 5CB
column: 30 m, 0.32 mm, 0.25 mm) for examination of reaction
conversions.
[1] Y. Nagai, A. Irie, H. Nakamura, K. Hino, H. Uno, H. Nishimura, J. Med.
Chem. 1982, 25, 1065.
[2] Y. Wang, S. Chackalamannil, Z. Hu, J. W. Clader, W. Greenlee, W. Billard,
H. Binch III, G. Crosby, V. Ruperto, R. A. Duffy, R. McQuade,
J. E. Lachowicz, Bioorg. Med. Chem. Lett. 2000, 10, 2247.
[3] N. Iranpoor, H. Firouzabadi, A. Rostami, Appl. Organomet. Chem. 2013,
27, 501.
[4] J. R. Kenny, J. L. Maggs, J. N. A. Tettey, A. W. Harrell, S. G. Parker,
S. E. Clarke, B. K. Park, Drug Metab. Dispos. 2005, 33, 271.
[5] C. M. Marson, P. Savy, A. S. Rioja, T. Mahadevan, C. Mikol, A. Veerupillai,
E. Nsubuga, A. Chahwan, S. P. Joel, J. Med. Chem. 2005, 49, 800.
[6] C. Hardouin, M. J. Kelso, F. A. Romero, T. J. Rayl, D. Leung, I. Hwang,
B. F. Cravatt, D. L. Boger, J. Med. Chem. 2007, 50, 3359.
[7] F. Rodriguez, I. Rozas, J. E. Ortega, J. J. Meana, L. F. Callado, J. Med. Chem.
2007, 50, 4516.
General Procedure for Synthesis of Catalyst
Amounts of 1 mmol (0.16 ml) of (À)-nicotine and 4 mmol
(0.46 ml) of benzyl chloride were mixed under solvent-free
conditions and the reaction mixture was heated at 70°C for
6 h. The reaction mixture was treated with dichloromethane
(5 × 6 ml) to remove unreacted materials and the dichlorometh-
ane phase was separated. The residue was obtained in 82% yield
(0.340 g) and then was mixed with PdCl2 (0.177 g PdCl2: 0.415 g
dibenzylated nicotinium salt) in acetone and refluxed for 12 h.
The supernatant was decanted and washed with acetone
(3 × 5 ml) to produce the catalyst in 91% yield (0.530 g) as a
brown powder.[50]
[8] A. Gangjee, Y. Zeng, T. Talreja, J. J. McGuire, R. L. Kisliuk, S. F. Queener,
J. Med. Chem. 2007, 50, 3046.
[9] M. P. Samant, R. White, D. J. Hong, G. Croston, P. M. Conn, J. A. Janovick,
J. Rivier, J. Med. Chem. 2007, 50, 2067.
[10] S. Pasquini, C. Mugnaini, C. Tintori, M. Botta, A. Trejos, R. K. Arvela,
M. Larhed, M. Witvrouw, M. Michiels, F. Christ, Z. Debyser, F. Corelli,
J. Med. Chem. 2008, 51, 5125.
[11] K. Okamoto, J. B. Housekeeper, C. K. Luscombe, Appl. Organomet. Chem.
2013, 27, 639.
[12] S. Sciabola, E. Carosati, M. Baroni, R. Mannhold, J. Med. Chem. 2005, 48,
3756.
13C NMR (100 MHz, DMSO, δ, ppm): 18.69 (C3′), 25.58 (C4′), 41.23
(CH3,pyro), 62.94 (CH2,benzyl.pyro), 63.77 (CH2,benzyl.py), 65.16
(C2′), 74.57 (C5′), 128.37 (Carom.phenyl), 128.96 (C5), 129.22
(Carom.phenyl), 129.48 (Carom.phenyl), 130.30 (Carom.phenyl),
132.47 (Carom.phenyl), 132.91 (Carom.phenyl), 133.82 (C3), 146.15
[13] C. M. Rayner, Contemp. Org. Synth. 1994, 1, 191.
[14] C. M. Rayner, Contemp. Org. Synth. 1995, 2, 409.
[15] C. M. Rayner, Contemp. Org. Synth. 1996, 3, 499.
[16] H. Yao, D. E. Richardson, J. Am. Chem. Soc. 2003, 125, 6211.
[17] M. C. Carreno, Chem. Rev. 1995, 95, 1717.
[18] P. Salama, C. Bernard, Tetrahedron Lett. 1995, 36, 5711.
[19] J. Lindley, Tetrahedron 1984, 40, 1433.
1
(C4), 147.56 (C2), 148.20 (C6). H NMR (400MHz, DMSO, δ, ppm):
[20] T. Yamamoto, Y. Sekine, Can. J. Chem. 1984, 62, 1544.
[21] R. J. S. Hickman, B. J. Christie, R. W. Guy, T. J. White, Aust. J. Chem. 1985,
38, 899.
[22] M. Kosugi, T. Ogata, M. Terada, H. Sano, T. Migita, Bull. Chem. Soc. Jpn.
1985, 58, 3657.
[23] G. Mann, D. Baranano, J. F. Hartwig, A. L. Rheingold, I. A. Guzei, J. Am.
Chem. Soc. 1998, 120, 9205.
[24] G. Y. Li, Angew. Chem. Int. Ed. 2001, 40, 1513.
[25] T. Itoh, T. Mase, Org. Lett. 2004, 6, 4587.
1.27–1.32 (2H, m, H3′), 2.15–2.30 (2H, m, H4′), 2.50–2.74 (2H, m,
H2′), 3.36 (3H, s, CH3), 4.35 (1H, d, J = 12.0Hz, CHbenzyl.pyro), 4.69
(1H, d, J = 12.0Hz, CHbenzyl.pyro), 5.35 (1H, t, J = 10.8 Hz, H5′), 5.96
(2H, s, CH2,benzyl.py), 7.47–7.63 (10H, m, Hphenyl), 8.43 (1H, dd,
J1 = 8.0 Hz, J2 = 6.0Hz, H5), 9.03 (1H, d, J = 8.0Hz, H4), 9.39 (1H, d,
J = 6.0Hz, H6), 9.60 (1H, s, H2). FT-IR (KBr, ν, cmÀ1): 700, 900, 1468,
1632, 2945, 3018, 3412. UV–visible (DMSO, nm): 267, 309. Anal.
Calcd for C24H28Cl4N2Pd (%): C, 48.63; H, 4.76; N, 4.73. Found
(%): C, 48.10; H, 4.35; N, 4.33.
[26] M. A. Fernández-Rodríguez, Q. Shen, J. F. Hartwig, J. Am. Chem. Soc.
2006, 128, 2180.
[27] C. C. Eichman, J. P. Stambuli, J. Org. Chem. 2009, 74, 4005.
[28] K. H. V. Reddy, V. P. Reddy, A. A. Kumar, G. Kranthi, Y. Nageswar, Beilstein
J. Org. Chem. 2011, 7, 886.
General Procedure for Synthesis of Symmetric Diaryl Sulfides
[29] Y. Zhang, K. C. Ngeow, J. Y. Ying, Org. Lett. 2007, 9, 3495.
[30] Y.-C. Wong, T. T. Jayanth, C.-H. Cheng, Org. Lett. 2006, 8, 5613.
[31] F. Y. Kwong, S. L. Buchwald, Org. Lett. 2002, 4, 3517.
[32] C. G. Bates, R. K. Gujadhur, D. Venkataraman, Org. Lett. 2002, 4, 2803.
[33] C. G. Bates, P. Saejueng, M. Q. Doherty, D. Venkataraman, Org. Lett.
2004, 6, 5005.
[34] V. P. Reddy, K. Swapna, A. V. Kumar, K. R. Rao, J. Org. Chem. 2009, 74, 3189.
[35] T. Kondo, T. A. Mitsudo, Chem. Rev. 2000, 100, 3205.
[36] F. Ke, Y. Qu, Z. Jiang, Z. Li, D. Wu, X. Zhou, Org. Lett. 2010, 13, 454.
[37] C. Tao, A. Lv, N. Zhao, S. Yang, X. Liu, J. Zhou, W. Liu, J. Zhao, Synlett
2011, 134.
[38] M. A. Fernández-Rodríguez, J. F. Hartwig, Chem. Eur. J. 2010, 16, 2355.
[39] S. M. Soria-Castro, Synlett 2012, 23, 2997.
[40] J. M. Becht, C. Le Drian, J. Org. Chem. 2011, 76, 6327.
[41] N. Park, K. Park, M. Jang, S. Lee, J. Org. Chem. 2011, 76, 4371.
[42] M. A. Fernández-Rodríguez, Q. Shen, J. F. Hartwig, Chem. Eur. J. 2006,
12, 7782.
[43] K. M. Wager, M. H. Daniels, Org. Lett. 2011, 13, 4052.
[44] A. R. Hajipour, F. Rafiee, Appl. Organomet. Chem. 2011, 25, 542.
[45] A. R. Hajipour, F. Rafiee, Appl. Organomet. Chem. 2012, 26, 51.
[46] A. R. Hajipour, I. M. Dehbane, F. Rafiee, Appl. Organomet. Chem. 2012,
26, 743.
[47] A. R. Hajipour, N. Najafi, F. Rafiee, Appl. Organomet. Chem. 2013, 27, 228.
[48] A. R. Hajipour, F. Rafiee, Appl. Organomet. Chem. 2013, 27, 412.
[49] A. R. Hajipour, F. Dordahan, F. Rafiee, Appl. Organomet. Chem.
2013, 27, 704.
A mixture of aryl halide (2 mmol), potassium thiocyanate
(1 mmol), [DBNT][PdCl4] (1 mol%) and KOH (4 eq.) in DMSO
(2 ml) was stirred at 120°C in an oil bath for an appropriate
amount of time. The progress of the reaction was monitored
using TLC. After completion of the reaction, the reaction
mixture was allowed to cool to room temperature. Then,
20 ml of water was added to the mixture and the product
(reaction mixture), resulting diaryl sulfide, was extracted with
ethyl acetate (3 × 10 ml). The organic phase was dried over
CaCl2, concentrated under vacuum and purified by column
chromatography on silica gel (n-hexane–EtOAc, 9:1). All
products were known compounds and were identified by
comparison of their 1H NMR spectra with those of authentic
samples.[28,30,36,37,41,43]
Acknowledgements
We gratefully acknowledge the funding support received for this
project from Isfahan University of Technology (IUT), IR Iran, and
Isfahan Science and Technology Town (ISTT), IR Iran. Further
financial support from the Center of Excellence in Sensor and Green
Chemistry Research (IUT) is gratefully acknowledged.
[50] A. R. Hajipour, R. Pourkaveh, Synlett 2014, 25, 1101.
wileyonlinelibrary.com/journal/aoc
Copyright © 2014 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2014, 28, 879–883