Please do not adjust margins
Green Chemistry
Page 6 of 7
DOI: 10.1039/C7GC00260B
ARTICLE
Journal Name
(b) S.-i. Fujita; Y. Yamanishi; M. Arai, J. Catal., 2013, 297, 137-
141; (c) V. P. Indran; N. A. S. Zuhaimi; M. A. Deraman; G. P.
Maniam; M. M. Yusoff; T. Y. Y. Hin; M. H. Ab Rahim, RSC Adv.,
2014, 4, 25257-25267; (d) S. I. Fujita; Y. Yamanishi; M. Arai, J.
Catal., 2013, 297, 137-141.
6. (a) H. G. Li; D. Z. Gao; P. Gao; F. Wang; N. Zhao; F. K. Xiao;
W. Wei; Y. H. Sun, Catal. Sci. Technol., 2013, 3, 2801-2809; (b)
J. Zhang; D. H. He, J. Colloid Interface Sci., 2014, 419, 31-38; (c)
H. G. Li; C. L. Xin; X. Jiao; N. Zhao; F. K. Xiao; L. Li; W. Wei; Y. H.
Sun, J. Mol. Catal. A-Chem., 2015, 402, 71-78; (d) H. G. Li; X.
Jiao; L. Li; N. Zhao; F. K. Xiao; W. Wei; Y. H. Sun; B. S. Zhang,
Theoretical calculation was used to explore the interaction
between CO2 and 2-cyanopyridine. All the electronic structure
and the energy calculations were carried out by the Gaussian
09 program 20. The equilibrium geometries and frequencies, as
well as IR spectrum, of all the structures were calculated at the
B3LYP/aug-cc-pVDZ level, i.e. Becke’s three-parameter
nonlocal-exchange functional with the nonlocal correlational
21
of Lee et al. (B3LYP) method with the aug-cc-pVDZ basis set
.
This method has been successfully used to estimate the
electrochemical reactivity of cyanopyridine in solution for CO2
reduction mechanism 22. To explore the interaction between 2-,
3-, 4-cyanopyridine and CO2, binding energies (Eb ) were
calculated based on the following equation,
Catal. Sci. Technol., 2015, 5, 989-1005.
7. J. George; Y. Patel; S. M. Pillai; P. Munshi, J. Mol. Catal. A-
Chem., 2009, 304, 1-7.
8. J. B. Li; T. Wang, J. Chem. Thermodyn., 2011, 43, 731-736.
9. C. Vieville; J. W. Yoo; S. Pelet; Z. Mouloungui, Catal. Lett.,
1998, 56, 245-247.
10. J. Ma; J. L. Song; H. Z. Liu; J. L. Liu; Z. F. Zhang; T. Jiang; H. L.
Fan; B. X. Han, Green Chem., 2012, 14, 1743-1748.
11. M. Aresta; A. Dibenedetto; F. Nocito; C. Pastore, J. Mol.
Catal. A-Chem., 2006, 257, 149-153.
ꢀꢁ = ꢀꢂꢃꢂꢄꢅ − ꢀꢆ − ꢀꢇꢈꢉ
(1)
Where, ꢀꢂꢃꢂꢄꢅ is the total energy of 2-, 3-, 4-cyanopyridine and
CO2, ꢀꢆ is the energy of 2-, 3-, 4-cyanopyridine, and ꢀꢇꢈꢉ is the
energy of gas phase CO2, respectively. According to this
definition, a negative value indicates an exothermic process.
12. S. Y. Huang; S. G. Liu; J. P. Li; N. Zhao; W. Wei; Y. H. Sun,
Catal. Lett., 2006, 112, 187-191.
13. (a) M. Honda; M. Tamura; Y. Nakagawa; S. Sonehara; K.
Acknowledgements
The authors gratefully acknowledge the financial support from
the National Key Research and Development Program of China
(2016YFA0602900), the financial support from NSFC
(21603212, 21672204, 21673220) and Special Program for
Applied Research on Super Computation of the NSFC-
Guangdong Joint Fund (the second phase). Part of the
computational time is supported by the Performance
Computing Center of Jilin University and Changchun Normal
University.
Suzuki; K. Fujimoto; K. Tomishige, ChemSusChem, 2013,
1341-4; (b) M. Honda; M. Tamura; Y. Nakagawa; K. Nakao; K.
6,
Suzuki; K. Tomishige, J. Catal., 2014, 318, 95-107; (c) A.
Bansode; A. Urakawa, Acs Catal., 2014, 4, 3877-3880; (d) P.
Unnikrishnan; S. Darbha, J. Chem. Sci., 2016, 128, 957-965.
14. J. X. Liu; Y. M. Li; J. Zhang; D. H. He, Appl. Catal. A-Gen.,
2016, 513, 9-18.
15. D. Geng; S. Yang; Y. Zhang; J. Yang; J. Liu; R. Li; T.-K. Sham;
X. Sun; S. Ye; S. Knights, Appl. Surf. Sci., 2011, 257, 9193-9198.
16. (a) L. Zhang; P. Liu; Z. Su, Polym. Degrad. Stabil., 2006, 91
,
2213-2219; (b) T. Matsutani; T. Asanuma; C. Liu; M. Kiuchi; T.
Takeuchi, Surf. Coat. Tech., 2003, 169-170, 624-627.
17. C. Jindarom; V. Meeyoo; B. Kitiyanan; T. Rirksomboon; P.
Rangsunvigit, Chem. Eng. J., 2007, 133, 239-246.
18. V. Calvino-Casilda; G. Mul; J. F. Fernández; F. Rubio-
References
1. (a) M. Aresta; A. Dibenedetto; A. Angelini, Chem. Rev.,
2014, 114, 1709-1742; (b) W. Wang; S. P. Wang; X. B. Ma; J. L.
Gong, Chem. Soc. Rev., 2011, 40, 3703-3727.
2. C. H. Zhou; H. Zhao; D. S. Tong; L. M. Wu; W. H. Yu, Catal.
Rev.-Sci. Eng., 2013, 55, 369-453.
3. (a) M. Pagliaro; R. Ciriminna; H. Kimura; M. Rossi; C. Della
Pina, Angew. Chem.-Int. Edit., 2007, 46, 4434-4440; (b) J. R.
Ochoa-Gomez; O. Gomez-Jimenez-Aberasturi; C. Ramirez-
Lopez; M. Belsue, Org. Process Res. Dev., 2012, 16, 389-399.
4. (a) P. Liu; M. Derchi; E. J. M. Hensen, Appl. Catal. A-Gen.,
2013, 467, 124-131; (b) G. Parameswaram; M. Srinivas; B. H.
Marcos; M. A. Bañares, Appl. Catal. A: Gen., 2011, 409-410
106-112.
,
19. (a) M. Tamura; K. Noro; M. Honda; Y. Nakagawa; K.
Tomishige, Green Chem., 2013, 15, 1567; (b) M. Tamura; M.
Honda; K. Noro; Y. Nakagawa; K. Tomishige, J. Catal., 2013,
305, 191-203.
20. M. J. Frisch, Gaussian 09 (Revision A.02), Gaussian,Inc.,
Wallingford, CT, 2009.
21. (a) C. T. Lee; W. T. Yang; R. G. Parr, Phys. Rev. B, 1988, 37
785-789; (b) A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
22. J. A. Keith; E. A. Carter, Chem. Sci., 2013, 4, 1490-1496.
,
Babu; P. S. S. Prasad; N. Lingaiah, Catal. Sci. Tech., 2013, 3,
3242-3249; (c) F. S. H. Simanjuntak; J. S. Choi; G. Lee; H. J. Lee;
S. D. Lee; M. Cheong; H. S. Kim; H. Lee, Appl. Catal. B-Environ.,
2015, 165, 642-650; (d) M. G. Alvarez; M. Pliskova; A. M.
Segarra; F. Medina; F. Figueras, Appl. Catal. B-Environ., 2012,
113, 212-220; (e) M. J. Climent; A. Corma; P. De Frutos; S.
Iborra; M. Noy; A. Velty; P. Concepción, J. Catal., 2010, 269
,
140-149; (f) A. Takagaki; K. Iwatani; S. Nishimura; K. Ebitani,
Green Chem., 2010, 12, 578; (g) J. R. Ochoa-Gómez; O. Gómez-
Jiménez-Aberasturi; B. Maestro-Madurga; A. Pesquera-
Rodríguez; C. Ramírez-López; L. Lorenzo-Ibarreta; J. Torrecilla-
Soria; M. C. Villarán-Velasco, Appl. Catal. A: Gen., 2009, 366
315-324.
,
5. (a) K. Jagadeeswaraiah; C. R. Kumar; P. S. S. Prasad; S.
Loridant; N. Lingaiah, Appl. Catal. A-Gen., 2014, 469, 165-172;
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins