H.P. Ng et al.: An in situ TEM investigation into grain growth and ordering of sputter-deposited nanocrystalline Ni3Al thin films
3. H.P. Ng, X.K. Meng, and A.H.W. Ngan, Scripta Mater. 39, 1737
finding that as-deposited Ni75at.%Al25at.% films made us-
ing low-power sputtering indeed have a disordered fcc
structure, and ordering follows on heating at 500 °C or
(1998).
4. W.H. Xu, X.K. Meng, A.H.W. Ngan, X.Y. Chen,and Z.G. Liu,
Mater. Lett. 44, 314 (2000).
above. The lack of thermal agitation under the low-power
sputtering condition is thought to be the reason for not
achieving the equilibrium L12 phase in the as-deposited
state. Another plausible reason may be that the thermo-
dynamic driving force for ordering may have a size ef-
fect; i.e., when the grain size is small enough, surface
effects become increasingly important, which may re-
duce the overall driving force for ordering. A detailed
analysis of the relative phase stability between ␥ and ␥Ј
in the nanometer scale would be required to understand
this potential effect.
5. C. Leyens, K.H. Trautmann, M. Peters, and W.A. Kaysser, Scripta
Mater. 36, 1309 (1997).
6. C. Leyens, J.W. van Liere, M. Peters, and W.A. Kaysser, Surf.
Coat. Technol. 108–109, 30 (1998).
7. H.N. Lee, Z.M. Park, M.H. Oh, K.Y. Kim, and D.M. Wee, Scripta
Mater. 41, 1073 (1999).
8. C. Leyens, M. Peters, and W.A. Kaysser, Adv. Eng. Mater. 2, 265
(2000).
9. J.M.E. Harper and K.P. Rodbell, J. Vac. Sci. Technol. B 15, 763
(1997).
10. X. Federspiel, F. Voiron, M. Ignat, T. Marieb, and H. Fujimoto, in
Advanced Interconnects and Contact Materials and Processes for
Future Integrated Circuits, edited by S.P. Murarka, M. Eizenberg,
D.B. Fraser, R. Madar, and R. Tung (Mater. Res. Soc. Symp.
Proc. 514, Warrendale, PA, 1998), p. 547.
V. CONCLUSIONS
11. J.T. Benoit, S. Chin, R.R. Grzybowski, S.T. Lin, R. Jain,
P. McCluskey, and T. Bloom, in Fourth Int. High Temp. Electron.
Conf. (IEEE, New York, 1998) p. 109
12. H.P. Ng and A.H.W. Ngan, J. Appl. Phys. 88, 2609 (2000).
13. P. de Almeida, R. Scha¨ublin, A. Almazouzi, M. Victoria, and
F. Le`vy, Thin Solid Films 368, 26 (2000).
14. H.P. Ng and A.H.W. Ngan, in Nanophase and Nanocomposite
Materials III, edited by S. Komarneni, J.C. Parker, and H. Hahn
(Mater. Res. Soc. Symp. Proc. 581, Warrendale, PA, 2000), p.
571.
15. V.L. Tellkamp, S. Dallek, D. Cheng, and E.J. Lavernia, J. Mater.
Res. 16, 938 (2001).
16. J.L. La´ba´r, Proc. EUREM 12, edited by L. Frank and F. Ciampor
(Czechoslovak Society for Electron Microscopy, Brno, Czecho-
slovakia, 2000), p. I379.
17. J.E. Burke and D. Turnbull, Prog. Met. Phys. 3, 220 (1952).
18. X.K. Meng, H. Vehoff, and A.H.W. Ngan, J. Mater. Res. 15, 2595
(2000).
The normal grain growth kinetics under in situ isother-
mal heating from 300 to 700 °C in the TEM were found
to obey the Burke growth law. The grain-boundary mo-
bility was found to obey an Arrehnius rate law with an
apparent activation energy of 1.6 eV, which agreed well
with the value in bulk. In addition to the normal grain
growth, abnormal grain growth was also observed. Grain
coalescence was identified as a mechanism for abnormal
grain growth. Rapid grain rotations to achieve crystallo-
graphic alignment were observed as a prerequisite step
prior to coalescence. The initially as-deposited state of
the films was crystalline with a fcc disordered structure.
Ordering into the equilibrium L12 superlattice structure
followed from annealing at temperatures above approxi-
mately 500 °C.
19. R.A. Varin, J. Bystrzycki, and A. Calka, Intermetallics 7, 785
(1999).
20. A. Michels, C.E. Krill, H. Natter, and R. Birringer, in Grain
Growth in Polycrystalline Materials III, edited by H. Weiland,
B.L. Adams, and A.D. Rollet (TMS, Warrendale, PA, 1998), p.
449.
21. T.R. Marlow and C.C. Koch, Acta Mater. 45, 2177 (1997).
22. M.A. Morris-Mun˜oz, A. Dodge, and D.G. Morris, Nanostruct.
Mater. 11, 873 (1999).
ACKNOWLEDGMENT
The work described in this paper was supported by a
grant from the Research Grants Council of the Hong
Kong Special Administrative Region, People’s Republic
of China, China (Project No. HKU 7077/00E).
23. M. Jurczyk, K. Smardz, W. Rajewski, and L. Smardz, Mater. Sci.
Eng. A 303, 70 (2001).
24. J. Lee, F. Zhou, K.H. Chung, N.J. Kim, and E.J. Lavernia, Metall.
Mater. Trans. 32A, 3109 (2001).
25. A. Michels, C.E. Krill, H. Ehrhardt, R. Birringer, and D.T. Wu,
REFERENCES
1. R.N. Wright, J.R. Fincke, W.D. Swank, D.C. Haggard, and
C.R. Clark, in Elevated Temperature Coatings: Science and Tech-
nology I, edited by N.B. Dahotre, J.M. Hampikian, and
J.J. Stiglich (Proc. High Temperature Coatings I, TMS, Warren-
dale, PA, 1995), p. 157.
2. Z. Gonzalez, J.G. Rodriguez, M. Casales, M. Amaya, and
L. Martinez, Brit. Corr. J. 36, 65 (2001).
Acta Mater. 47, 2143 (1999).
26. M.D. Baro`, S. Surinach, J. Malagelada, M.T. Clavaguera-Mora,
S. Gialanella, and R.W. Cahn, Acta Metall. Mater. 41, 1065
(1993).
27. A.D. Rollett and W.W. Mullins, Scripta Mater. 36, 975 (1997).
28. J. Haslam, S.R. Phillpot, D. Wolf, D. Moldovan, and H. Gleiter,
Mater. Sci. Eng. A 318, 293 (2001).
2094
J. Mater. Res., Vol. 17, No. 8, Aug 2002
Downloaded: 22 Mar 2015
IP address: 169.230.243.252