2
12
the role of pure Ni and F-treated Ni. The NiH4−-complex ion
that combined stoichiometrically with Mg does not work as
the catalyst as shown in Fig. 2.
It is, however, preferable from practical engineering
and cost-effectiveness viewpoints that no further chemical
processing such as hydrogenation is required other than
F-treatment process.
6. R.A. Zidan, S. Takara, A.G. Hee, C.M. Jensen: J. Alloys Comp. 285,
19 (1999)
1
7
. B. Lewandowski, T. Seidl, S. Takara, D. Sun, C.M. Jensen: Proc. Int.
Symp. Metal-Hydrogen Systems (Noosa, Queensland, Australia 2000)
p. 288
8. K.J. Gross, C. Jensen, S. Takara, G.J. Thomas: Proc. Int. Symp. Metal-
Hydrogen Systems (Noosa, Queensland, Australia 2000) p. 287
9
. G. Sandrock, K. Gross, G.J. Thomas, C. Jensen, S. Takara: Proc. Int.
Symp. Metal-Hydrogen Systems (Noosa, Queensland, Australia 2000)
p. 278
1
0. H.I. Schlesinger, H.C. Brown, A.B. Finholt, J.R. Gilbreath, H.R. Hock-
stra, E.K. Hydo: J. Am. Chem. Soc. 75, 215 (1953)
3
Conclusions
1
1
1. A. Levy, J.B. Brown, C.J. Lyons: Ind. Eng. Chem. 52, 211 (1960)
2. H.C. Brown, C.A. Brown: J. Am. Chem. Soc. 84, 1493 (1962)
Catalytic functions of pure Mg and Mg2Ni were evaluated
in accordance with the studies on the fluorination effects on
13. J.A. Gardiner, J.W. Collat: J. Am. Chem. Soc. 87, 1692 (1965)
−
1
4. K.A. Holbrook, P.J. Twist: “Hydrolysis of the Brohydride Ion Cat-
alyzed by Motal-Boron Alloys”, J. Chem. Soc. (A), 890 (1971)
5. M.M. Krccvoy, R.W. Jacobson: Ventron Alembic 15, 2 (1979)
6. C.M. Kaufinan, B. Sen: “Hydrogen Generation by Hydrolysis of
Sodium Tetrahydroborate: Effects of Acids and Transition Metals and
Their Salts”, J. Chem. Soc., Dalton Trans. 307 (1985)
catalytic hydrolysis of BH -complex ion solutions.
4
F-treatment effects on Mg2Ni were found prominent for
improving the H-generation kinetics. The increased spe-
cific area by F-treatment enhanced the catalytic function of
Mg2Ni.
1
1
1
1
7. V.C.Y. Kong, F.R. Foulkes, D.W. Kirk, J.T. Hinatsu: Int. J. Hydrogen
Energy 24, 665 (1999)
8. S.C. Amendola, S.L. Sharp-Goldman, M. Saleem Janjua, N.C. Spencer,
M.T. Kelly, P.J. Petillo, M. Binder: Int. J. Hydrogen Energy 25, 969
(2000)
Hydrogenation effects on the F-treated Mg2Ni, i.e. F−Mg2
NiH4, were not observed clearly in this work.
Hydrogenation during F-treatment was estimated to re-
sult in the disproportionation of Mg2Ni to xMgF2 and
−
1
2
9. S.C. Amendola, M. Binder, M.T. Kelly, P.J. Petillo, S.L. Sharp-
Goldman: “ A Novel Catalytic Process for generating Hydrogen Gas
from Aqueous borohydride Solutions”, Adv. in Hydrogen Energy 36
Mg2−xNiH4 at the extreme surface. And the NiH -enriched
4
surface is considered to contribute to the improved kinetics.
Disproportionation effects on the catalytic activity should be
subjected to further detailed studies.
(2000)
0. H.B.H. Cooper, Electrolytic Process for the Production of Alkali Metal
Borohydrides, US Patent 3734842 (22 May 1973); C.H. Hale, Pro-
duction of Metal Borohydrides and Organic Onium Borohydrides, US
Patent 4931154 (5 June 1990); S. Amendola, Electroconversion Cell,
US Patent 5804329 (8 September 1998)
Acknowledgements. This work has been funded by NEDO (The New En-
ergy & Industrial Technology Development Organization) for “The Devel-
opment of Metal–Hydrogen Complex Solutions as the H-Storage System”.
It has also been supported in part by grant-in-aid for Scientific Research
on Priority Area A of the “New Protium Function” from the Ministry of
Education, Science, Sports and Culture. The authors wish to express their
special thanks to these two governmental organizations for their funding
and support.
21. Y.-M. Sun, K. Iwata, S. Chiba, Y. Matsuyama, S. Suda: J. Alloys
Comp. 253/254, 520 (1997)
22. Y.-M. Sun, X.-P. Gao, N. Araya, E. Higuchi, S. Suda: J. Alloys Comp.
293–295, 364 (1999); Y.-M. Sun, S. Suda: Proc. Int. Symp. Metal-
Hydrogen Systems (Noosa, Queensland, Australia 2000) p. 288
2
3. Z.-P. Li, Y.-M. Sun, B.-H. Liu, X.-P. Gao, S. Suda: Mater. Res. Soc.
Symp. Proc. 513, 25 (1998)
References
2
4. F.-J. Liu, G. Sandrock, S. Suda: Z. Phys. Chem. 183, 163 (1994)
1
. K. Fukuda: Proc. WE-NET Hydrogen Energy Symposium, Tokyo
1999) pp. 1–26; M. Yoshikawa: Proc. WE-NET Hydrogen En-
ergy Symposium, Tokyo (1999) pp. 27–34; NEDO, Booklet of the
25. X.-L. Wang, N. Haraikawa, S. Suda: J. Alloys Comp. 231, 397 (1995)
26. F.-J. Liu, G. Sandrock, S. Suda: Trans. Mater. Res. Soc. Jpn. 18B, 1229
(1994)
(
International Clean Energy Network Using Hydrogen (WE-NET)
27. F.-J. Liu, S. Suda: J. Alloys Comp. 230, 58 (1995)
28. F.-J. Liu, S. Suda: J. Alloys Comp. 232, 212 (1996)
29. D. Noreus, K. Jansson, M. Nygren: Z. Phys. Chem. NF 146, 191
(1985)
(2000)
2
3
. 1996–1998 Annual Report: International Energy Agency (IEA) Agree-
ment on the Production and Utilization of Hydrogen
. 1998–1999 Annual Progress Report (available in Japanese): Grant-
in-aid Project for Scientific Research on Priority Area A of “New
Protium Function in Sub-nano Matters” (Ministry of Education: Sci-
ence, Sports and Culture)
30. D. Noreus, L. Kihlborg: J. Less-Common Metals 123, 233 (1986)
31. D. Noreus, L.G. Olsson: J. Chem. Phys. 78, 2419 (1983)
32. D. Noreus: Z. Phys. Chem. NF 163, 575 (1989)
33. M. Olofsson-Martensson, M. Kritikos, D. Noreus: J. Am. Chem. Soc.
122, 6960 (1999)
4
. B. Bogdanovic, M. Schwickardi: J. Alloys Comp. 253/254, 1 (1997)
. C.M. Jensen, R. Zidan, N. Mariels, A. Hee, C. Hagen: Int. J. Hydrogen
Energy 24, 461 (1999)
5
34. M. Olofsson-Martensson, U. Haussermann, J. Tomkinson, D. Noreus:
J. Am. Chem. Soc. 121, 10908 (1999)