Dalton Transactions
Paper
peroxo species was affected by 2,6-di-tert-butylphenol and 1,4-
hydroquinone, leading to a 2,2′-biphenol-coupled product and
4 (a) S.-K. Lee, B. G. Fox, W. A. Froland, J. D. Lipscomb and
E. Münck, J. Am. Chem. Soc., 1993, 115, 6450; (b) K. E. Liu,
A. M. Valentine, D. Wang, B. H. Huynh, D. E. Edmondson,
A. Salifoglou and S. J. Lippard, J. Am. Chem. Soc., 1995, 117,
10174; (c) A. M. Valentine, S. S. Stahl and S. J. Lippard,
J. Am. Chem. Soc., 1999, 121, 3876.
5 (a) V. V. Vu, J. P. Emerson, M. Martinho, Y. S. Kim,
E. Münck, M. H. Park and L. Que Jr., Proc. Natl. Acad.
Sci. U. S. A., 2009, 106, 14814; (b) Z. Han, N. Sakai,
L. H. Böttger, S. Klinke, J. Hauber, A. X. Trautwein and
R. Hilgenfeld, Structure, 2015, 23, 11.
6 (a) E. Y. Tshuva and S. J. Lippard, Chem. Rev., 2004, 104,
987; (b) Y. Dong, S. Menage, B. A. Brennan, T. E. Elgren,
H. G. Jang, L. L. Pearce and L. Que Jr., J. Am. Chem. Soc.,
1993, 115, 1851; (c) N. Kitajima, N. Tamura, H. Amagai,
H. Fukui, Y. Moro-oka, Y. Mizutani, T. Kitagawa, R. Mathur
and K. Heerwegh, J. Am. Chem. Soc., 1994, 116, 9071;
1
,4-benzoquinones, respectively. Based on detailed kinetic
(half-order dependence for 3 and 4), mechanistic (KIE = 1.78,
ρ = −0.7 for 2,6-DTBPh), and computational studies, an elec-
trophilic oxoiron(IV) species with S = 1 spin state, was
suggested as reactive species responsible for the HAT pro-
cesses. Based on our preliminary results complex 3 is capable
of oxidizing both oxygen-atom transfer and hydrogen-atom
abstraction, that is a further evidence for the presence of elec-
trophilic oxoiron(IV) species as key oxidant (Scheme 3). From
benzyl alcohol benzaldehyde (34% based on 3) was formed
and triphenylphosphine gave triphenylphosphine oxide (93%
based on 3) at 20 °C in MeCN (Fig. S3–S5, ESI†). Detailed
kinetic studies on these two systems are in progress.
(
d) Y. Dong, S. P. Yan, V. G. Young and L. Que Jr., Angew.
Acknowledgements
Chem., 1996, 108, 673, (Angew. Chem., Int. Ed. Engl., 1996,
35, 618); (e) T. Ookubo, H. Sugimoto, T. Nagayama,
H. Masuda, T. Sato, K. Tanaka, Y. Maeda, H. Okawa,
Y. Hayashi, A. Uehara and M. Suzuki, J. Am. Chem. Soc.,
1996, 118, 701; (f) K. Kim and S. J. Lippard, J. Am. Chem.
Soc., 1996, 118, 4914; (g) M. Kodera, M. Itoh, K. Kano,
T. Funabiki and M. Reglier, Angew. Chem., 2005, 117, 7266,
(Angew. Chem., Int. Ed., 2005, 44, 7104); (h) S. V. Kryatov,
S. Taktak, I. V. Korendovych, E. V. Rybak-Akimova,
J. Kaizer, S. Torelli, X. P. Shan, S. Mandal, V. L. Mac-Murdo,
A. Mairata i Payeras and L. Que Jr., Inorg. Chem., 2005, 44,
This work was supported by a grant from the Hungarian
Research Fund (OTKA) K108489. and COST Actions CM1205,
CM1201, and CM1003. The authors would like to acknowledge
funding from the Romanian Ministry for Education and
Research (grant PN-II-ID-PCE-2012-4-0488). The authors are
also indebted to the Data Center from NIRDIMT (Cluj-Napoca,
Romania) for providing the computational infrastructure and
technical assistance.
8
5; (i) A. T. Fiedler, X. Shan, M. P. Mehn, J. Kaizer,
Notes and references
S. Torelli, J. R. Frisch, M. Kodera and L. Que Jr., J. Phys.
Chem. A, 2008, 112, 13037; ( j) M. A. Cranswick, K. K. Meier,
X. Shan, A. Stubna, J. Kaizer, M. P. Mehn, E. Münck and
L. Que, Jr., Inorg. Chem., 2012, 51, 10417; (k) Y. H. Zong,
Y. Zang, L. J. Shu, E. C. Wilkinson, L. Que, Jr.,
K. Kauffmann and E. Münck, J. Am. Chem. Soc., 1986, 108,
5027; (l) X. Zhang, H. Furutachi, S. Fujinami, S. Nagatomo,
Y. Maeda, Y. Watanabe, T. Kitagawa and M. Suzuki, J. Am.
Chem. Soc., 2005, 127, 826.
1
(a) J. Du Bois, T. J. Mizoguchi and S. J. Lippard, Coord.
Chem. Rev., 2000, 200–202, 443; (b) M. Fontecave,
S. Ménage and C. Duboc-Toia, Coord. Chem. Rev., 1998,
1
78–180, 1555; (c) S. V. Kryatov and E. V. Rybak-Akimova,
Chem. Rev., 2005, 105, 2175; (d) A. R. McDonald and
L. Que, Jr., Coord. Chem. Rev., 2013, 257, 414; (e) M. Costas,
M. P. Mehn, M. P. Jensen and L. Que, Jr., Chem. Rev., 2004,
1
04, 939; (f) E. Y. Tshuva and S. J. Lippard, Chem. Rev.,
2
004, 104, 987.
7 (a) C. Duboc-Toia, S. Menage, R. Y. N. Ho, L. Que Jr.,
C. Lambeaux and M. Fontecave, Inorg. Chem., 1999, 38,
1261; (b) Y. Mekmouche, H. Hummel, R. Y. N. Ho, L. Que
Jr., V. Schünemann, F. Thomas, A. X. Trautwein, C. Lebrun,
K. Gorgy, J.-C. Leprete, M.-N. Collomb, A. Deronzier,
M. Fontecave and S. Menage, Chem. – Eur. J., 2002, 8, 1196;
(c) M. Costas, C. W. Cady, S. V. Kryatov, M. Ray, M. J. Ryan,
E. V. Rybak-Akimova and L. Que Jr., Inorg. Chem., 2003, 42,
7519; (d) J. S. Pap, M. A. Cranswigh-Hergovich, G. Baráth,
M. Giorgi, G. T. Rohde, J. Kaizer, G. Speier and L. Que, Jr.,
Eur. J. Inorg. Chem., 2013, 3858.
8 J. S. Pap, A. Draksharapu, M. Giorgi, W. R. Browne,
J. Kaizer and G. Speier, Chem. Commun., 2014, 50,
1326.
9 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
2
(a) J. M. Bollinger, C. Krebs, A. Vicol, S. Chen, B. A. Ley,
D. E. Edmondson and B. H. Huynh, J. Am. Chem. Soc.,
1
998, 120, 1094; (b) P. Moënne-Loccoz, J. Baldwin,
B. A. Ley, T. M. Loehr and J. M. Bollinger, Biochemistry,
998, 37, 14659; (c) J. Baldwin, C. Krebs, L. Saleh,
1
M. Stelling, B. H. Huynh, J. M. Bollinger and P. Riggs-
Gelasco, Biochemistry, 2003, 42, 13269; (d) A. J. Skulan,
T. C. Brunold, J. Baldwin, L. Saleh, J. M. Baldwin and
E. I. Solomon, J. Am. Chem. Soc., 2004, 126, 8842;
(
e) D. Yun, R. Garcia-Serres, B. M. Chicalese, Y. H. An,
B. H. Huynh and J. M. Bollinger, Biochemistry, 2007, 46,
925.
(a) J. A. Broadwater, J. Ai, T. M. Loehr, L. Sanders and
B. G. Fox, Biochemistry, 1998, 37, 14664;
b) J. A. Broadwater, C. Achim, E. Münck and B. G. Fox, Bio-
chemistry, 1999, 38, 12197.
1
3
(
This journal is © The Royal Society of Chemistry 2016
Dalton Trans.