Page 9 of 11
Dalton Transactions
Please do not adjust margins
Dalton Transactions
ARTICLE
slightly poorer performance was offset by greater stability
towards recycling of the catalyst. With substrates that were
more difficult to oxidize, the expanded-pore frameworks were
superior catalysts as compared to their smaller analogues. This
is likely a result of the combination of more space for diffusion
within the framework and the higher oxidation potential of the
iodine catalysts. In some cases, there was higher selectivity
associated with the MOF 25%-I catalysts than in the uncatalyzed
reaction of even the reaction with an analogous homogeneous
catalyst.
Ö. Yazaydin, R. Q. Snurr, M. O’Keeffe,DJO. KI:im10.1a0n3d9/OC.9MDT.0Y0a3g6h8Ai,
Science, 2010, 329, 424–428.
19 H. Fei and S. M. Cohen, Chem. Commun., 2014, 50, 4810–
4812.
20 R. Sun, B. Liu, B.-G. Li and S. Jie, ChemCatChem, 2016, 8,
3261–3271.
21 T. Kitamura and Y. Fujiwara, Org. Prep. Proced. Int., 1997, 29,
409–458.
22 Viktor V. Zhdankin, Chemistry of Hypervalent Compounds,
John Wiley & Sons, Ltd, 2013.
23 V. V. Zhdankin and P. J. Stang, Chem. Rev., 2008, 108, 5299–
5358.
24 E. A. Merritt and B. Olofsson, Angew. Chem. Int. Ed., 2009,
48, 9052–9070.
25 R. Bikshapathi, P. S. Prathima and V. J. Rao, New J. Chem.,
2016, 40, 10300–10304.
26 R. Mu, Z. Liu, Z. Yang, Z. Liu, L. Wu and Z.-L. Liu, Adv. Synth.
Catal., 2005, 347, 1333–1336.
Conflicts of Interest
There are no conflicts to declare.
27 M. S. Yusubov and V. V. Zhdankin, Resour.-Effic. Technol.,
2015, 1, 49–67.
28 R. D. Richardson and T. Wirth, Angew. Chem. Int. Ed., 2006,
45, 4402–4404.
29 B. Tahmouresilerd, P. J. Larson, D. K. Unruh and A. F.
Cozzolino, Catal. Sci. Technol., 2018, 8, 4349–4357.
30 I. Senkovska, F. Hoffmann, M. Fröba, J. Getzschmann, W.
Böhlmann and S. Kaskel, Microporous Mesoporous Mater.,
2009, 122, 93–98.
Acknowledgements
The present work was support by Texas Tech University and the
National Science Foundation (NMR instrument grant CHE-
1048553). We are grateful for assistance from the Hope-Weeks
group at Texas Tech for assistance with TGA measurements.
31 Nakeun Ko, Jisu Hong, Siyoung Sung, Kyle E. Cordova, Hye
Jeong Park and Jaheon Kim, Dalton Trans., 2015, 44, 2047–
2051.
32 Vyacheslav K., Dmitrii A. Vasilevskii, Andrei A. Pap, Galina V.
Kalechyts, Yurii V. Matveienko, Andrei G. Baran, Nikolay A.
Halinouski and Vitalii G. Petushok, ARKIVOC, 2008, 2008, 69–
93.
33 K. A. McDonald, N. Ko, K. Noh, J. C. Bennion, J. Kim and A. J.
Matzger, Chem. Commun., 2017, 53, 7808–7811.
34 R. K. Deshpande, J. L. Minnaar and S. G. Telfer, Angew. Chem.
Int. Ed., 2010, 49, 4598–4602.
35 O. V. Gutov, M. G. Hevia, E. C. Escudero-Adán and A. Shafir,
Inorg. Chem., 2015, 54, 8396–8400.
36 M. A. Gotthardt, S. Grosjean, T. S. Brunner, J. Kotzel, A. M.
Gänzler, S. Wolf, S. Bräse and W. Kleist, Dalton Trans., 2015,
44, 16802–16809.
37 S. Chavan, J. G. Vitillo, D. Gianolio, O. Zavorotynska, B.
Civalleri, S. Jakobsen, M. H. Nilsen, L. Valenzano, C. Lamberti,
K. P. Lillerud and S. Bordiga, Phys. Chem. Chem. Phys., 2012,
14, 1614–1626.
38 M. J. Katz, Z. J. Brown, Y. J. Colón, P. W. Siu, K. A. Scheidt, R.
Q. Snurr, J. T. Hupp and O. K. Farha, Chem. Commun., 2013,
49, 9449–9451.
39 R. K. Deshpande, J. L. Minnaar and S. G. Telfer, Angew. Chem.
Int. Ed., 2010, 49, 4598–4602.
References
1
2
3
4
5
6
7
A. Dhakshinamoorthy, Z. Li and H. Garcia, Chem. Soc. Rev.,
2018, 47, 8134–8172.
A. Corma, H. García and F. X. Llabrés i Xamena, Chem. Rev.,
2010, 110, 4606–4655.
J. Gascon, A. Corma, F. Kapteijn and F. X. Llabrés i Xamena,
ACS Catal., 2014, 4, 361–378.
J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and
J. T. Hupp, Chem. Soc. Rev., 2009, 38, 1450–1459.
D. Farrusseng, S. Aguado and C. Pinel, Angew. Chem. Int. Ed.,
2009, 48, 7502–7513.
D. Saha, R. Sen, T. Maity and S. Koner, Langmuir, 2013, 29,
3140–3151.
S. A. Burgess, A. Kassie, S. A. Baranowski, K. J. Fritzsching, K.
Schmidt-Rohr, C. M. Brown and C. R. Wade, J. Am. Chem.
Soc., 2016, 138, 1780–1783.
8
9
B. R. Reiner, A. A. Kassie and C. R. Wade, Dalton Trans., ,
DOI:10.1039/C8DT03801E.
C.-D. Wu, A. Hu, L. Zhang and W. Lin, J. Am. Chem. Soc., 2005,
127, 8940–8941.
10 S. M. Cohen, Z. Zhang and J. A. Boissonnault, Inorg. Chem.,
2016, 55, 7281–7290.
11 S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun,
J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang,
Y. Fang, J. Li and H.-C. Zhou, Adv. Mater., 2018, 30, 1704303.
12 Y. Bai, Y. Dou, L.-H. Xie, W. Rutledge, J.-R. Li and H.-C. Zhou,
Chem. Soc. Rev., 2016, 45, 2327–2367.
13 M. Bosch, M. Zhang and H.-C. Zhou, Adv. Chem., 2014, 2014,
e182327.
14 M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M.
O’Keeffe and O. M. Yaghi, Science, 2002, 295, 469–472.
15 S. J. Garibay and S. M. Cohen, Chem. Commun., 2010, 46,
7700–7702.
16 V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M.
Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G.
Maurin, G. Férey, A. Vittadini, S. Gross and C. Serre, Angew.
Chem. Int. Ed., 2012, 51, 9267–9271.
17 L. Ma, J. M. Falkowski, C. Abney and W. Lin, Nat. Chem., 2010,
2, 838–846.
40 J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S.
Bordiga and K. P. Lillerud, J. Am. Chem. Soc., 2008, 130,
13850–13851.
39 E. Langseth, O. Swang, B. Arstad, A. Lind, J. H. Cavka, T. L.
Jensen, T. E. Kristensen, J. Moxnes, E. Unneberg and R. H.
Heyn, Mater. Chem. Phys., 2019, 226, 220-225.
42 T. Dohi and Y. Kita, Chem. Commun., 2009, 2073–2085.
43 A. M. Harned, Tetrahedron Lett., 2014, 55, 4681–4689.
44 F. Heinen, E. Engelage, A. Dreger, R. Weiss and S. M. Huber,
Angew. Chem. Int. Ed., 2018, 57, 3830–3833.
45 D. Macikenas, E. Skrzypczak-Jankun and J. D. Protasiewicz,
Angew. Chem. Int. Ed., 2000, 39, 2007–2010.
46 B. V. Meprathu, M. W. Justik and J. D. Protasiewicz,
Tetrahedron Lett., 2005, 46, 5187–5190.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins