LETTER
Oxidation of Primary Alcohols to Methyl Esters
725
(10) Among the typical hypervalent iodine(III or V) reagents,
PhIO gave the best yield [75% yield], while other reagents
such as phenyliodine diacetate (PIDA) [47% yield],
phenyliodine bis(trifluoroacetate) (PIFA) [40% yield],
Dess–Martin periodinane [trace], and o-iodoxybenzoic acid
[trace], were also examined under the reaction conditions
described in Table 1.
In summary, we developed a facile and direct oxidative
methyl esterification of primary alcohols using hyperval-
ent iodine(III) reagents. The environmentally benign pro-
cedure described herein16 will provide a new practical
method for methyl esterification because of its simple op-
eration and use of non-toxic reagents.
(11) Reviews see: (a) Drewry, D. H.; Coe, D. M.; Poon, S. Med.
Res. Rev. 1999, 19, 97. (b) Ley, S. V.; Baxendale, I. R.;
Bream, R. N.; Jackson, P. S.; Leach, A. G.; Longbottom, D.
A.; Nesi, M.; Scott, J. S.; Storer, R. I.; Taylor, S. J. J. Chem.
Soc., Perkin Trans. 1 2000, 3815. (c) Bhalay, G.; Dunstan,
A.; Glen, A. Synlett 2000, 1846. (d) Kirschning, A.;
Monenschein, H.; Wittenberg, R. Angew. Chem. Int. Ed.
2001, 40, 650. (e) Togo, H.; Sakuratani, K. Synlett 2002,
1966.
(12) (a) Togo, H.; Nogami, G.; Yokoyama, M. Synlett 1998, 534.
(b) Togo, H.; Abe, S.; Nogami, G.; Yokoyama, M. Bull.
Chem. Soc. Jpn. 1999, 72, 2351. (c) Abe, S.; Sakuratani, K.;
Togo, H. Synlett 2001, 22. (d) Abe, S.; Sakuratani, K.;
Togo, H. J. Org. Chem. 2001, 66, 6174.
(13) (a) Ley, S. V.; Thomas, A. W.; Finch, H. J. Chem. Soc.,
Perkin Trans 1 1999, 669. (b) Ley, S. V.; Schucht, O.;
Thomas, A. W.; Murray, P. J. J. Chem. Soc., Perkin Trans. 1
1999, 1251. (c) Baxendale, I. R.; Ley, S. V.; Piutti, C.
Angew. Chem. Int. Ed. 2002, 41, 2194. (d) Baxendale, I. R.;
Lee, A.-L.; Ley, S. V. J. Chem. Soc., Perkin Trans. 1 2002,
1850.
Acknowledgement
This work was supported by Grant-in-Aid for Scientific Research
(S) (No. 13853010) and for Encouragement of Young Scientists
(No. 13771331) from the Ministry of Education, Science, Sports
and Culture, Japan. H. T. also thanks Industrial Technology Rese-
arch Grant Program (No. 02A28004d) from New Energy and Indus-
trial Technology Development Organization (NEDO) of Japan.
References
(1) (a) Protective Group in Organic Synthesis, 3rd ed.; Greene,
T. M.; Wutz, P. G., Eds.; Wiley: New York, 1999, 149.
(b) Protective Group in Organic Synthesis, 3rd ed.; Greene,
T. M.; Wutz, P. G., Eds.; Wiley: New York, 1999, 373.
(2) (a) Larock, R. C. Comprehensive Organic Transformation,
2nd ed.; VCH: New York, 1999, 1656. (b) March, J.
Advanced Organic Chemistry; John Wiley & Sons: New
York, 1992, 1196.
(3) (a) Kaneko, R.; Seki, K.; Suzuki, M. Chem. Ind. (London)
1971, 1016. (b) Smith, A. B. III; Sulikowski, G. A.;
Sulikowski, M. M.; Fujimoto, K. J. Am. Chem. Soc. 1992,
114, 2567. (c) Foot, J. S.; Kanno, H.; Giblin, G. M. P.;
Taylor, R. J. K. Synlett 2002, 1293.
(4) (a) Corey, E. J.; Samuelsson, B. J. Org. Chem. 1984, 49,
4735. (b) Guest, A. W. Tetrahedron Lett. 1986, 27, 3049.
(5) Milovanovic, J. N.; Vasojevic, M.; Gojkovic, S. J. Chem.
Soc., Perkin Trans. 2 1991, 1231.
(14) (a) Tohma, H.; Morioka, H.; Takizawa, S.; Arisawa, M.;
Kita, Y. Tetrahedron 2001, 57, 345. (b) Tohma, H.;
Morioka, H.; Harayama, Y.; Hashizume, M.; Kita, Y.
Tetrahedron Lett. 2001, 42, 6899.
(15) (a) Okawara, M.; Mizuta, K. Kogyo Kagaku Zasshi 1961, 64,
232. (b) Yamada, Y.; Okawara, M. Makromol. Chem. 1972,
152, 153. (c) Hallensleben, M. L. Angew. Makromol. Chem.
1972, 27, 223.
(16) General Experimental Procedure: Oxidation with PhIO-
KBr: To a stirred solution of 1 (1.0 mmol) and KBr (0.5
mmol) in MeOH (1 mL) was added dropwise 0.5 N HCl aq
(0.5 mL). PhIO (3.5 mmol) was added to the vigorously
stirred solution and stirring was continued for several hours
at room temperature while checking the reaction progress by
GC or TLC. After completion of the reaction, water (ca. 1.5
mL) was added to the mixture. The mixture was filtrated
through BOND ELUT C 18 (Varian), washed with a small
amount of water, and extracted with Et2O. The filtrate was
dried with MgSO4, and evaporated. The residue was purified
by column chromatography (SiO2/n-hexane–Et2O) to give
pure 2. Oxidation with PDAIS-KBr: To a stirred solution
of 1 (1.0 mmol) and KBr (1.0 mmol) in MeOH (2 mL) was
added dropwise 0.5 N HCl aq (1 mL). PDAIS (prepared by
the reported procedure9b) (3.0 mmol) was added to the
vigorously stirred solution and stirring was continued for
several hours at room temperature. After completion of the
reaction, water (ca. 3 mL) was added to the mixture. The
mixture was filtered through BOND ELUT C 18 (Varian)
and washed with a small amount of water to remove KBr.
The residue was extracted with Et2O, and the filtrate was
dried and evaporated. The residue was purified by column
chromatography to give pure 2.
(6) McDonald, C. E.; Holcomb, H. L.; Leathers, T. W.;
Kennedy, K. E. Microchem. J. 1993, 47, 115.
(7) McDonald, C. E.; Nice, L. E.; Shaw, A. W.; Nestor, N. B.
Tetrahedron Lett. 1993, 34, 2741.
(8) Recent reviews see: (a) Stang, P. J.; Zhdankin, V. V. Chem.
Rev. 1996, 96, 1123. (b) Kita, Y.; Takada, T.; Tohma, H.
Pure & Appl. Chem. 1996, 68, 627. (c) Varvoglis, A.
Hypervalent Iodine in Organic Synthesis; Academic Press:
San Diego, 1997. (d) Kitamura, T.; Fujiwara, Y. Org. Prep.
Proced. Int. 1997, 29, 409. (e) Ochiai, M. In Chemistry in
Hypervalent Compounds; Akiba, K., Ed.; Wiley-VCH: New
York, 1999, Chap. 12. (f) Wirth, T.; Hirt, U. H. Synthesis
1999, 1271. (g) Zhdankin, V. V.; Stang, P. J. Chem. Rev.
2002, 102, 2523. (h) Hypervalent Iodine Chemistry (Top.
Curr. Chem. 224); Wirth, T., Ed.; Springer-Verlag: Berlin,
Heidelberg, 2003.
(9) (a) Tohma, H.; Takizawa, S.; Maegawa, T.; Kita, Y. Angew.
Chem. Int. Ed. 2000, 39, 1306. (b) Tohma, H.; Maegawa,
T.; Takizawa, S.; Kita, Y. Adv. Synth. Catal. 2002, 344, 328.
Synlett 2003, No. 5, 723–725 ISSN 0936-5214 © Thieme Stuttgart · New York