L. Khachatryan et al. / Journal of Organometallic Chemistry 566 (1998) 263–270
269
tion of silacyclobutane via k-insertion (-2%) has been
References
proved in the examination of the flash vacuum pyroly-
sis of SCB-d2 [6]. Apart from that, the reaction se-
quence (11) should yield D(C) enriched silacyclobutane
which should decompose into D-enriched ethene. Our
observation of the only ethene isotopomer, C2H4 (Table
1) serves as unequivocal proof that path (11) does not
take place.
[1] C.M. Golino, R.D. Bush, L.H. Sommer, J. Am. Chem. Soc. 97
(1975) 7371.
[2] A.K. Maltsev, V.N. Khabasheku, O.M. Nefedov, Dokl. Akad.
Nauk. SSSR 247 (1979) 383.
[3] N. Auner, J. Grobe, Z. Anorg. Allg. Chem. 459 (1979) 15.
[4] R.T. Conlin, R.S. Gill, J. Am. Chem. Soc. 105 (1983) 618.
[5] I.M.T. Davidson, A. Fenton, S. Ijadi-Maghsoodi, et al., J.
Organomet. 3 (1984) 1593.
We admit, however, that the H/D scrambling is
partly due to radical reactions, since these reactions are
proved by the identification of methane, butane,
dimethylsilane and perhaps disilapentane and methyld-
isilacyclopentene among the products. The rate con-
stants at room temperature of the silylene insertion or
addition and that of the H-abstraction by silylene from
hydrocarbons (methane, ethane) were thought to be ca.
10−10–10−11 cm3 molecule−1 s−1 [25,43] and ca. (1+
0.5) 10−14 cm−3 molecule−1 s−1 [44], respectively.
However, it was admitted that the latter values might
correspond to reactions of silylene with impurities, and
that the real values of silylene H-abstraction at room
temperature must be significantly lower than 10−14
[6] T.J. Barton, N. Tillman, J. Am. Chem. Soc. 109 (1987) 6711.
[7] A.D Johnson, J. Perrin, J.A. Mucha, D.E. Ibbotson, J. Phys.
Chem. 97 (1993) 12937.
[8] A.D Johnson, J.A. Mucha, D.E. Ibbotson, Proc. Electrochem.
Soc. 92–18 (1992) 507.
&
[9] J. Pola, Z. Bastl, J. Subrt, R. Taylor, J. Mater. Chem. 5 (1995)
1345.
[10] Z. Bastl, H. Bu¨rger, R. Fajgar, et al., Appl. Organomet. Chem.
10 (1996) 83.
[11] M.A. Ring, H.E. O’Neal, S.F. Rickborn, B.A. Sawrey,
Organometallics 2 (1983) 1891.
[12] B.A. Sawrey, H.E. O’Neal, M.A. Ring, D. Coffey, Int. J. Chem.
Kinet. 16 (1984) 801.
[13] S.F. Rickborn, M.A. Ring, H.E. O’Neal, D. Coffey, Int. J.
Chem. Kinet. 16 (1984) 289.
[14] D.M. Rayner, R.P. Steer, P.A. Hackett, C.L. Wilson, P. John,
Chem. Phys. Lett. 123 (1986) 449.
[15] S. Baileux, M. Bogey, J. Breidung, et al., Angew. Chem. Int. Ed.
Engl. 35 (1996) 2513.
[16] S. Bailleux, M. Bogey, J. Demaison, et al., J. Chem. Phys. 106
(1997) 10016.
[17] S. Dhanya, A. Kumar, R.K. Vatsa, R.D. Saini, J.P. Mittal, J.
Pola, J. Chem. Soc Faraday Trans. 92 (1996) 179.
[18] J. Pola, V. Chvalovsky´, E.A. Volnina, L.E. Gusel’nikov, J.
Organomet. Chem. 341 (1988) 13.
cm−3 molecule−1 −1. Assuming the typical preexpo-
s
nential factor ca. 10−10 cm3 molecule−1 s−1 and the
activation energy of ca. 8–10 kcal mol−1 for bimolecu-
lar reactions implies that the reaction constant of the
addition of silylene at ca. 1000 K (effective temperature
in the laser hot zone) is only several times higher than
the reaction constant for the H abstraction by silylene.
This estimation is in favour of the occurrence of H-ab-
straction reactions from the main H(C) containing
products (the parent compound or mostly ethene,
propene-d1) which can further initiate short chain radi-
cal reactions resulting in the H/D scrambling (Reac-
tions 12 and 13).
[19] M. Sedla´cˆkova´, J. Pola, E.A. Volnina, L.E Gusel’nikov, J. Anal.
Appl. Pyrolysis 14 (1988) 345.
[20] J. Pola, E.A. Volnina, L.E. Gusel’nikov, J. Organomet. Chem.
391 (1990) 275.
&
[21] D. Cukanova´, J. Pola, J. Organomet. Chem. 453 (1993) 17.
[22] M. Urbanova´, E.A. Volnina, L.E. Gusel’nikov, J. Pola, J.
Organomet. Chem. 509 (1996) 73.
[23] J. Laane, J. Am. Chem. Soc. 89 (1967) 1144.
[24] S.F. Rickborn, M.A. Ring, H.E. O’Neal, Int. J. Chem. Kinet. 16
(1984) 1371.
[25] J.M. Jasinski, R. Becerra, R. Walsh, Chem. Rev. 95 (1995) 1203.
[26] P.S. Neudorfl, E.M. Lown, I. Safarik, A. Jodhan, O.P. Strausz,
J. Am. Chem. Soc. 109 (1987) 5780.
D(H2DC)Si:+RHD(H2DC)HSi +R
(12a)
(12b)
(13a)
(13b)
D(H2DC)HSi D(H)Si:+ CH2D
DHSi:+RHDH2Si +R
[27] H.-J. Wu, L.V. Interrante, Polym. Prep. (Am. Chem. Soc. Div.
Polym. Chem.) (1991) 32.
DH2Si H2Si:+D
[28] H. Ru¨bel, B. Schroder, W. Fuhs, J. Krauskopf, T. Rupp, K.
Bethge, Phys. Stat. Sol. (B) 139 (1987) 131.
[29] E. Gat, M.A. El Khakani, M. Chaker, et al., J. Mater. Res. 7
(1992) 2478.
[30] K. Mui, D.K. Basa, F.W. Smith, Phys. Rev. (B) 35 (1987) 8089.
[31] D.K. Basa, F.W. Smith, Thin Solid Films 192 (1990) 121.
[32] A. Jean, M. Chaker, Y. Diawara, et al., J. Appl. Phys. 72 (1992)
3110.
[33] M.H. Brodsky, M. Cardona, J. Cuomo, J. Phys. Rev. (B) 16
(1977) 3556.
In conclusion, we show that SCB-d2 decomposition is
not only controlled by initial silylene and silene extru-
sions but also by extensive H/D scrambling reactions.
Apart from the earlier demonstrated 1,2-hydrogen shift
from Si to C producing n-propylsilylene [6], we reveal
that other modes of H/D scrambling occur via the
1,2-H(D) shift in silene and also by radical chain reac-
tions initiated by H-abstraction by silylenes.
[34] G. Maier, G. Mihm, H.P. Reisenauer, D. Littman, Chem. Ber.
117 (1984) 2369.
[35] D.K. Russell, Chem. Soc. Rev. 19 (1990) 407.
Acknowledgements
[36] J. Pola, M. Farkac' ova´, P. Kuba´t, A. Trka, J. Chem. Soc.
Faraday Trans. I 80 (1984) 1499.
The work was supported by the grant of the
Academy of Sciences of the Czech Republic (Grant No.
A4072509).
[37] G. Raabe, J. Michl, Chem. Rev. 85 (1985) 419.
[38] B.A. Sawrey, H.E. O’Neal, M.A. Ring, D. Coffey, Int. J. Chem.
Kinet. 16 (1984) 31.