10.1002/cctc.202001399
ChemCatChem
FULL PAPER
Brookhart, Organometallics 2004, 23, 1766-1776; g) W. Yao, Y.
Zhang, X. Jia, Z. Huang, Angew. Chem. Int. Ed. 2014, 53, 1390-
1394; h) K. E. Allen, D. M. Heinekey, A. S. Goldman, K. I.
Goldberg, Organometallics 2013, 32, 1579-1582; i) B. Sheludko, M.
T. Cunningham, A. S. Goldman, F. E. Celik, ACS Catal. 2018, 8,
7828-7841; j) A. R. Chianese, M. J. Drance, K. H. Jensen, S. P.
McCollom, N. Yusufova, S. E. Shaner, D. Y. Shopov, J. A. Tendler,
Organometallics 2014, 33, 457-464; k) A. R. Chianese, A. Mo, N. L.
Lampland, R. L. Swartz, P. T. Bremer, Organometallics 2010, 29,
3019-3026; l) A. Kumar, T. Zhou, T. J. Emge, O. Mironov, R. J.
Saxton, K. Krogh-Jespersen, A. S. Goldman, J. Am. Chem. Soc.
2015, 137, 9894-9911; m) A. Kumar, J. D. Hackenberg, G. Zhuo, A.
M. Steffens, O. Mironov, R. J. Saxton, A. S. Goldman, J. Mol. Catal.
A. Chem. 2016; n) Z. Huang, E. Rolfe, E. C. Carson, M. Brookhart,
A. S. Goldman, S. H. El-Khalafy, A. H. R. MacArthur, Adv. Synth.
Catal. 2010, 352, 125-135; o) J. Choi, A. H. MacArthur, M.
Brookhart, A. S. Goldman, Chem. Rev. 2011, 111, 1761-1779; p)
D. Hermann, M. Gandelman, H. Rozenberg, L. J. W. Shimon, D.
Milstein, Organometallics 2002, 21, 812-818; q) E. Ben-Ari, M.
Gandelman, H. Rozenberg, L. J. W. Shimon, D. Milstein, J. Am.
Chem. Soc. 2003, 125, 4714-4715; r) E. Ben-Ari, G. Leitus, L. J. W.
Shimon, D. Milstein, J. Am. Chem. Soc. 2006, 128, 15390-15391;
s) Y. Wang, L. Qian, Z. Huang, G. Liu, Z. Huang, Chin. J. Chem.
2020, 38, 837-841; t) X. Zhang, S.-B. Wu, X. Leng, L. W. Chung, G.
Liu, Z. Huang, ACS Catal. 2020, 10, 6475-6487; u) X. Jia, L.
Zhang, C. Qin, X. Leng, Z. Huang, Chem. Comm. 2014, 50,
11056-11059. v) H. Valdés, E. Rufino-Felipe, D. Morales-Morales,
J. Organomet. Chem 2019, 15, 120864. w) H. Valdés, M. A.
García-Eleno, D. Canseco-Gonzalez, D. Morales-Morales,
ChemCatChem 2018, 10, 3136-3172.
R. Ahuja, B. Punji, M. Findlater, C. Supplee, W. Schinski, M.
Brookhart, A. S. Goldman, Nat. Chem. 2010, 3, 167.
M. Wilklow-Marnell, B. Li, T. Zhou, K. Krogh-Jespersen, W. W.
Brennessel, T. J. Emge, A. S. Goldman, W. D. Jones, J. Am.
Chem. Soc. 2017, 139, 8977-8989.
B. Sheludko, C. F. Castro, A. S. Goldman, F. E. Celik, ACS Catal.
2020, DOI: 10.1021/acscatal.0c02406.
Y. Wang, C. Qin, X. Jia, X. Leng, Z. Huang, Angew. Chem. Int. Ed.
2017, 56, 1614-1618.
a) S. Kundu, Y. Choliy, G. Zhuo, R. Ahuja, T. J. Emge, R.
Warmuth, M. Brookhart, K. Krogh-Jespersen, A. S. Goldman,
Organometallics 2009, 28, 5432-5444; b) F. C. Liu, A. S. Goldman,
Chem. Comm. 1999, 655-656.
J. M. Goldberg, G. W. Wong, K. E. Brastow, W. Kaminsky, K. I.
Goldberg, D. M. Heinekey, Organometallics 2015, 34, 753-762.
B. C. Vicente, Z. Huang, M. Brookhart, A. S. Goldman, S. L. Scott,
Dalton Trans. 2011, 40, 4268-4274.
again charged with carbon monoxide and allowed to stir a
further 30 minutes. The solution was then dried in vacuo to yield
a yellow-brown powder that was determined to be 70% pure by
31P NMR and used without further purification. The major
impurity present was found to be di-tert-butylphosphine oxide.
1H NMR (500 MHz, C6D6) δ 7.33 (s, 2H, Ar-H), 3.16 (s, 4H,
Ar-CH2P), 1.98 (bs, 4H, PCH(CH3)2), 1.243 (d, 11.5 Hz, 18H,
PC(CH3)3), 1.168 (q, 8 Hz, 12H, PH(CH3)2), 0.918 (q, 7 Hz, 12H,
PH(CH3)2). 31P NMR (202 MHz, C6D6) δ 149.51, 67.39.
Gas-phase Continuous-flow Catalytic Data
Reactions were carried out in a 6.4 mm outer diameter (OD)
quartz tube reactor with an expanded section of 12.5 mm OD
packed with quartz wool to hold the catalyst powder in place.
The reactor was packed with supported catalyst under argon
atmosphere and sealed with valves prior to connection to the
gas-flow manifold. The reactor was placed inside a resistively
heated ceramic furnace with external temperature control, and
the catalyst bed temperature was measured with a K-type
thermocouple placed in direct contact with the catalyst powder.
The tubing upstream of the reactor was purged with helium gas
prior to opening the reactor to the manifold.
Butane (Airgas, 99.99%) was used as received. Helium
(Praxair, 99.999%) was passed through an on-stream oxygen
and moisture trap. Helium was bubbled through a stainless-steel
saturator filled with 3,3-dimethyl-1-butene (tert-butylethylene,
TBE) to provide the desired vapor pressure. Reaction products
were analyzed using an Agilent 7890B GC equipped with a GS-
GASPRO capillary column (0.32 mm x 60 m) fitted with a flame
ionization detector.
[3]
[4]
[5]
[6]
[7]
In a typical experiment, 2 mg of molecular pincer-iridium
[8]
complex
[(tBu2PO-tBu4POCOP)Ir(CO)]
or
[(tBu2PO-
iPr4PCP)Ir(CO)] was supported on 60 mg of silica support via
incipient wetness impregnation and the resulting material was
used without further treatment. Unless stated otherwise, all
experiments were carried out at 1.47 atm total pressure due to
pressure drop through the catalyst bed. Gas flow rates reported
were measured at room temperature and pressure.
[9]
[10]
[11]
O. S. Mironov, R. J. Saxton, A. S. Goldman, A. Kumar,
US10017430B2, February 15, 2018.
a) N. Ashkenazi, A. Vigalok, S. Parthiban, Y. Ben-David, L. J. W.
Shimon, J. M. L. Martin, D. Milstein, J. Am. Chem. Soc. 2000, 122,
8797-8798; b) A. Dauth, U. Gellrich, Y. Diskin-Posner, Y. Ben-
David, D. Milstein, J. Am. Chem. Soc. 2017, 139, 2799-2807.
a) APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, WI,
USA. 2013. b) G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122. c)
A. Bondi, Journal of Physical Chemistry C 1964, 68(3), 441-451.
K. Zhu, P. D. Achord, X. Zhang, K. Krogh-Jespersen, A. S.
Goldman, J. Am. Chem. Soc. 2004, 126, 13044-13053.
Z. Huang, M. Brookhart, A. S. Goldman, S. Kundu, A. Ray, S. L.
Scott, B. C. Vicente, Adv. Synth. Catal. 2009, 351, 188-206.
K. Deguchi, I. Yuhara, S. Ogasawara, Nippon Kagaku Kaishi 1974,
1974, 319-324.
[12]
Selectivity was calculated via:
Si = xi / Σxi ∙ 100%
[13]
[14]
[15]
(xi = mol fraction of product)
Acknowledgements
This work was supported by the National Science Foundation
(CBET-1705746) and the Department of Energy Office of
Science (DE-SC0020139). The authors would like to thank Prof.
Akshai Kumar for valuable discussions, and Chenxu Liu and
Cesar A. Rubio for their help in data processing.
Keywords: iridium • dehydrogenation • hydrogen transfer •
heterogeneous catalysis • supported catalysts
[1]
[2]
J. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, B. M.
Weckhuysen, Chem. Rev. 2014, 114, 10613-10653.
a) A. Kumar, T. M. Bhatti, A. S. Goldman, Chem. Rev. 2017, 117,
12357-12384; b) J. Choi, A. S. Goldman, in Iridium Catalysis (Ed.:
P. G. Andersson), Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, pp. 139-167; c) D. Morales-Morales, Pincer Compounds,
Chemistry and Applications, 1st ed., Elsevier, 2018; d) C. M.
Jensen, Chem. Comm. 1999, 2443-2449; e) I. Göttker-
Schnetmann, P. White, M. Brookhart, J. Am. Chem. Soc. 2004,
126, 1804-1811; f) I. Göttker-Schnetmann, P. S. White, M.
8
This article is protected by copyright. All rights reserved.