Inorganic Chemistry
Communication
Chem. 2009, 1, 695. (c) Goswami, S.; Sanda, S.; Konar, S. Cryst. Eng.
Comm. 2014, 16, 369.
18, and 20 h, respectively. For the transformation of 2b, in
second and third runs, no substantial changes in the yields
(94% and 90%) were observed for the same reaction time.
However, after three runs, an appreciable fall in the yield of 2b
has been observed down to 56% (Figure 2b). In order to reveal
any structural changes in the catalyst FeSq-MOF after four
cycles of reactions, FTIR and powder X-ray diffraction (PXRD)
analysis of recovered FeSq-MOF were performed after each
cycle of reaction, and the results are discussed in the
Supporting Information (Figures S2, S3).
To check whether Fe(II) salts are also able to convert
tetrazines to oxadiazole derivatives, the substrate tetrazines
(2a−4a) were allowed to react with Fe(II) salts (synthesis
details in Supporting Information and Table S1). Solution state
ESI-MS analysis reveals the formation of [Fe(2b/3b/
4b)]2+complexes (1−9) along with the respective transformed
products (2b−4b; Figures S26−S28). However, the reaction of
substrates (5a−7a) with Fe(II) salt indicates the stability of
only transformed products (5b−7b) in solution, which is
confirmed by ESI-MS analysis (Figure S29). Besides, complex 1
was structurally (Table S2) and magnetically characterized and
described in detail in the Supporting Information (Figure S30−
S33).
(2) (a) Bloch, E. D.; Britt, D.; Lee, C.; Doonan, C. J.; Uribe-Romo, F.
J.; Furukawa, H.; Long, J. R.; Yaghi, O. M. J. Am. Chem. Soc. 2010, 132,
14382. (b) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S.
T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. (c) Li, H.; Eddaoudi,
M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.
(3) (a) Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Chem.
Commun. 2012, 48, 11275. (b) Horcajada, P.; Surble,
Hong, D.-Y.; Seo, Y.-K.; Chang, J.-S.; Greneche, J.-M.; Margiolakid, I.;
Ferey, G. Chem. Commun. 2007, 2820. (c) Lalonde, M. B.; Farha, O.
K.; Scheidt, K. A.; Hupp, J. T. ACS Catal. 2012, 2, 1550. (d) Horike,
S.; Dinca, M.; Tamaki, K.; Long, J. R. J. Am. Chem. Soc. 2008, 130,
́
S.; Serre, C.;
̀
́
̆
5854. (e) Wang, J.-L.; Wang, C.; Lin, W. ACS Catal. 2012, 2, 2630.
(f) Gascon, J.; Corma, A.; Kapteijn, F.; Xamena, F. X. L. I. ACS Catal.
2014, 4, 361. (g) Phan, N. T. S.; Nguyen, T. T.; Vu, P. H. L.
ChemCatChem. 2013, 5, 3068. (h) Gu, Z.-Y.; Park, J.; Raiff, A.; Wei, Z.;
Zhou, H.-C. ChemCatChem. 2014, 6, 67.
(4) Zou, R.-Q.; Sakurai, H.; Han, S.; Zhong, R.-Q.; Xu, Q. J. Am.
Chem. Soc. 2007, 129, 8402.
(5) Dhakshinamoorthy, A.; Garcia, H. Chem. Soc. Rev. DOI: 10.1039/
C3CS60442J.
(6) (a) Singh, S.; Sharma, L. K.; Saraswat, A.; Siddiqui, I. R.; Kehrib,
H. K.; Pal Singh, R. K. RSC Adv. 2013, 3, 4237. (b) Dolman, S. J.;
Gosselin, F.; O’Shea, P. D.; Davies, I. W. J. Org. Chem. 2006, 71, 9548.
(c) Ducharme, Y.; Blouin, M.; Brideau, C.; Chateauneuf, A.; Gareau,
Y.; Grimm, E. L.; Juteau, H.; Laliberte, S.; MacKay, B.; Masse, F.;
Ouellet, M.; Salem, M.; Styhler, A.; Friesen, R. W. ACS Med. Chem.
Lett. 2010, 1, 170. (d) Zou, X. J.; Lai, L. H.; Jin, G. Y.; Zhang, Z. X. J.
Agric. Food Chem. 2002, 50, 3757. (e) Theime, P. C.; Franke, A.;
Denke, D.; Lehmann, H. D.; Gries, J. Ger. Offen. 1981, 300, 6351.
(f) Kumar, K. A.; Jayaroopa, P.; Kumar, G. V. Int. J. ChemTech Res.
2012, 4, 1782. (g) Sahu, V. K. R.; Singh, A. K.; Yadav, D. Int. J.
ChemTech Res. 2011, 3, 1362.
(7) (a) Du, M.; Bu, X.-H.; Huang, Z.; Chen, S.-T.; Guo, Y.-M.; Diaz,
C.; Ribas, J. Inorg. Chem. 2003, 42, 552. (b) Du, M.; Guo, Y.-M.; Chen,
S.-T.; Bu, X.-H.; Batten, S. R.; Ribas, J.; Kitagawa, S. Inorg. Chem. 2004,
43, 1287.
(8) (a) Jakopin, Z.; Dolenc, M. S. Curr. Org. Chem. 2008, 12, 850.
(b) Bentiss, F.; Lagrenee, M. J. Heterocycl. Chem. 1999, 36, 1029.
́
(c) Fang, T.; Tan, Q.; Ding, Z.; Liu, B.; Xu, B. Org. Lett. 2014, 16,
2342. (d) Kidwai, M.; Bhatnagar, D.; Mishra, N. K. Green Chem. Lett.
Rev. 2010, 3, 55. (e) de Oliveira, C. S.; Lira, B. F.; Barbosa-Filho, J. M.;
Lorenzo, J. G. F.; de Athayde-Filho, P. F. Molecules 2012, 17, 10192.
(9) (a) Hunter, D.; Neilson, D. G. J. Chem. Soc., Perkin Trans. I 1985,
1081. (b) Allegretti, J.; Hancock, J.; Knutson, R. S. J. Org. Chem. 1962,
27, 1463. (c) Hoogenboom, R.; Moore, B. C.; Schubert, U. S. J. Org.
Chem. 2006, 71, 4903.
In conclusion, we present here a simple and efficient
synthetic method for the transformation of tetrazines to
oxadiazole derivatives using FeSq-MOF as a heterogeneous
catalyst at 25 °C. Compared to Fe(II) salts, FeSq-MOF exhibits
superiority in terms of product isolation, reusability, and easy-
handling. Therefore, besides being simple, milder, and
environmentally benign, this catalytic method gives easy access
to the synthesis of the chemically and biologically important
oxadiazole derivatives.
ASSOCIATED CONTENT
■
S
* Supporting Information
Includes experimental details, a scheme, ESI-MS, H and 13C
1
NMR, PXRD, structural and magnetic study detail, and
crystallographic tables. This material is available free of charge
AUTHOR INFORMATION
Corresponding Author
*Tel: +91-755-6692339. Fax: +91-755-6692392. E-mail:
■
(10) Goswami, S.; Adhikary, A.; Jena, H. S.; Biswas, S.; Konar, S.
Inorg. Chem. 2013, 52, 12064.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
S.G. thanks IISER Bhopal for a Ph.D. fellowship. H.S.J. thanks
IISER Bhopal for a postdoctoral fellowship. The authors
sincerely thank Mr. Qysar Maqbool for his help in SEM
measurement. S.K. thanks CSIR, Government of India (Project
No. 01(2473)/11/EMR-II) and IISER Bhopal for generous
financial and infrastructural support.
DEDICATION
■
Dedicated to Professor Abraham Clearfield on the occasion of
his 86th birthday.
REFERENCES
■
(1) (a) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed.
2004, 43, 2334. (b) Horike, S.; Shimomura, S.; Kitagawa, S. Nat.
7073
dx.doi.org/10.1021/ic5003258 | Inorg. Chem. 2014, 53, 7071−7073