1
0
GOLDER ET AL.
treatment. Samples were then rapidly transferred into the
[5] H. Gommans, B. Verreet, B. P. Rand, R. Muller, J. Poortmans,
P. Heremans, J. Genoe, Adv. Funct. Mater. 2008, 18, 3686.
evaporation chamber via a connected N -filled glove box.
2
[
6] Z. Zheng, Q. Hu, S. Zhang, D. Zhang, J. Wang, S. Xie, R. Wang,
Y. Qin, W. Li, L. Hong, N. Liang, F. Liu, Y. Zhang, Z. Wei,
Z. Tang, T. P. Russell, J. Hou, H. Zhou, Adv. Mater. 2018, 30,
The evaporation rate was controlled by a quartz-crystal
monitor that was calibrated through a series of thickness
measurements of each layer with a surface profiler (Veeco
Dektak 150). The evaporation rate for each layer and cath-
ode was maintained as follows: AIL 1 ± 0.1 Å/s, SubPc
1
801801.
[7] C. Kulshreshtha, G. W. Kim, R. Lampande, D. H. Huh, M. Chae,
J. H. Kwon, J. Mater. Chem. A 2013, 1, 4077.
[
8] Z. El Jouad, M. Morsli, G. Louarn, L. Cattin, M. Addou,
J. C. Bernède, Sol. Energy Mater. Sol. Cells 2015, 141, 429.
9] A. Barito, M. E. Sykes, D. Bilby, J. Amonoo, Y. Jin, S. E. Morris,
P. F. Green, J. Kim, M. Shtein, J. Appl. Phys. 2013, 113, 203110.
1.7 ± 0.3 Å/s, C60 1.0 ± 0.1 Å/s, BCP 1.3 ± 0.3 Å/s, and
Al 10 ± 3 Å/s. During evaporation, the chamber pressure
was maintained below 9 × 10− Torr. After the deposition
of the interlayer, the vacuum was broken in order to load
further materials, and the sample was transferred tempo-
[
6
[
10] K. Nakano, K. Tajima, Adv. Mater. 2017, 29, 1603269.
[11] F. Jin, Z. Su, B. Chu, P. Cheng, J. Wang, H. Zhao, Y. Gao,
X. Yan, W. Li, Sci. Rep. 2016, 6, 26262.
rally back into the N -filled glove box. For each
2
[
12] A. Barito, M. E. Sykes, B. Huang, D. Bilby, B. Frieberg, J. Kim,
P. F. Green, M. Shtein, Adv. Energy Mater. 2015, 4, 1400216.
13] J. C. Wang, S. Q. Shi, C. W. Leung, S. P. Lau, K. Y. Wong, Appl.
Phys. Lett. 2012, 100, 053301.
interlayer-containing device, a reference cell (SubPc/BCP
OSC w/o AIL) was fabricated simultaneously to ensure
comparability. After the evaporation process, the devices
[
were transferred back into a N -filled glove box and
[14] M. Hirade, C. Adachi, Appl. Phys. Lett. 2011, 100, 153302.
[15] L. Caliò, P. R. Bhushan, J. Benduhn, K. Vandewal, H.-
G. Rubahn, M. Madsen, S. Kazim, S. Ahmad, Sustainable Energy
Fuels 2018, 2, 2296.
2
encapsulated to prevent damage from the oxygen and
moisture. A total of 82 devices were prepared and ana-
lyzed in the dark and under simulated AM 1.5G solar illu-
mination from a class A solar simulator (Newport 300 W)
[16] W. Chen, D.-C. Qi, H. Huang, X. Gao, A. T. S. Wee, Adv. Funct.
Mater. 2011, 21, 410.
2
with an illumination intensity of 100 mW/cm , which was
[17] P. Agarwala, D. Kabra, J. Mater. Chem. A 2017, 5, 1348.
controlled by a programmable source meter (Keithley
[18] S. S. Reddy, K. Gunasekar, J. H. Heo, S. H. Im, C. S. Kim, D.-
2
400). The light intensity was calibrated using a VLSI
H. Kim, J. H. Moon, J. Y. Lee, M. Song, S.-H. Jin, Adv. Mater.
2
016, 28, 686.
StSRC-1000-TC-QZ reference solar cell, while series resis-
tance (R ) and shunt resistance (R ) were estimated by
[
[
19] D. E. M. Rojas, K. T. Cho, Y. Zhang, M. Urbani, N. Tabet,
S
sh
G. Torre, M. K. Nazeeruddin, T. Torres, Adv. Energy Mater.
taking the reciprocal from the slope of a tangent to the J–
V curve at the open- and short-circuit conditions, respec-
tively. For monochromatic incident photon-to-current effi-
ciency or EQE measurements, a 100 W Xe lamp was used
to generate the bias light.
2
018, 8, 1800681.
20] C.-F. Lin, S.-H. Li, C.-C. Lee, T. Sakurai, M. Kubota, W. C. Su,
J.-C. Huang, T.-L. Chiu, H.-C. Han, L.-C. Chen, C.-T. Chen, J.-
H. Lee, Sol. Energy Mater. Sol. Cells 2015, 137, 138145.
21] J. Golder, C.-W. Lin, H.-W. Chen, Y.-B. Lan, C.-T. Chen, J.-
K. Wang, J. Phys. D Appl. Phys. 2018, 51, 314002.
[
[22] Y. Nakayama, T. L. Nguyen, Y. Ozawa, S. Machida, T. Sato,
H. Tokairin, Y. Noguchi, H. Ishii, Adv. Energy Mater. 2014, 4,
ACKNOWLEDGMENTS
1
301354.
[23] S. M. Menke, R. J. Holmes, Energy Environ. Sci. 2014,
, 499.
[
[
This research was supported in part by the Ministry of Sci-
ence and Technology of Taiwan, iMATE Program of Acade-
mia Sinica, and National Chiao Tung University.
7
24] T. M. Clarke, J. R. Durrant, Chem. Rev. 2010, 110, 6736.
25] Y.-T. Lee, C.-L. Chiang, C.-T. Chen, Chem. Commun. 2008,
2
, 217.
[
[
26] J.-L. Bredas, Mater. Horiz. 2014, 1, 17.
27] H. Gommans, S. Schols, A. Kadashchuk, P. Heremans, J. Phys.
Chem. C 2009, 113, 2974.
ORCID
[
28] X. Xiao, J. D. Zimmerman, B. E. Lassiter, K. J. Bergemann,
S. R. Forrest, Appl. Phys. Lett. 2013, 102, 073302.
29] J. Wang, T. Wang, D. Cao, X. Zhao, J. Liu, M. Zhuo, B. Mi,
Z. Gao, Org. Electron. 2015, 23, 11.
[
REFERENCES
[
[
1] Z. Yin, J. Wei, Q. Zheng, Adv. Sci. 2016, 3, 1500362.
2] J. D. Servaites, M. A. Ratner, T. J. Marks, Energy Environ. Sci.
[30] A. van Dijken, A. Perro, E. A. Meulenkamp, K. Brunner, Org.
Electron. 2003, 4, 131.
2
011, 11, 4410.
[31] I. Irfan, S. Graber, F. So, Y. Gaoa, Org. Electron. 2012, 13,
2028.
[32] W. Tress, K. Leo, M. Riede, Adv. Funct. Mater. 2011, 21, 2140.
[
3] C. Sun, Z. Wu, Z. Hu, J. Xiao, W. Zhao, H.-W. Li, Q.-Y. Li, S.-
W. Tsang, Y.-X. Xu, K. Zhang, H.-L. Yip, J. Hou, F. Huang,
Y. Cao, Energy Environ. Sci. 2017, 10, 1784.
[4] P. Peumans, S. R. Forrest, Appl. Phys. Lett. 2001, 79, 126.