Communications
combined organic extracts were washed with saturated brine (20 mL),
metry 2003, 14, 3851; d) L. Navarre, S. Darses, J.-P. Genet,
Angew. Chem. 2004, 116, 737; Angew. Chem. Int. Ed. 2004, 43,
719; e) D. R. Carbery, T. J. Donohoe, Chem. Commun. 2004,
722; f) B. M. Kim, H. Kim, W. Kim, K. Y. Im, J. K. Park, J. Org.
Chem. 2004, 69, 5104; g) Y. Hamashima, H. Somei, Y. Shimura,
T. Tamura, M. Sodeoka, Org. Lett. 2004, 6, 1861; h) G. Liang, D.
Trauner, J. Am. Chem. Soc. 2004, 126, 9544.
dried with anhydrous Na2SO4, and concentrated in vacuo after
filtration. The residual crude product was purified by column
chromatography on silica gel (1/7 ethyl acetate/hexane as the
eluent) to give (R)-enriched 2-phenylcyclohexanone (146.5 mg,
96% yield) as a white solid.
Details on the products and the determination of their ee values
are listed in Table 3.
[3] A. Yanagisawa, T. Watanabe, T. Kikuchi, H. Yamamoto, J. Org.
Chem. 2000, 65, 2979.
[4] a) K. Ishihara, S. Nakamura, M. Kaneeda, H. Yamamoto, J. Am.
Chem. Soc. 1996, 118, 12854; b) S. Nakamura, M. Kaneeda, K.
Ishihara, H. Yamamoto, J. Am. Chem. Soc. 2000, 122, 8120.
Nakai et al. have reported an asymmetric protonation of silyl
enolates by water catalyzed by a chiral cationic Pd complex:
c) M. Sugiura, T. Nakai, Angew. Chem. 1997, 109, 2462; Angew.
Chem. Int. Ed. Engl. 1997, 36, 2366.
[5] a) A. Yanagisawa, Y. Nakatsuka, K. Asakawa, H. Kageyama, H.
Yamamoto, Synlett 2001, 69; b) A. Yanagisawa, Y. Nakatsuka, K.
Asakawa, M. Wadamoto, H. Kageyama, H. Yamamoto, Bull.
Chem. Soc. Jpn. 2001, 74, 1477.
[6] A. Yanagisawa, H. Kageyama, Y. Nakatsuka, K. Asakawa, Y.
Matsumoto, H. Yamamoto, Angew. Chem. 1999, 111, 3916;
Angew. Chem. Int. Ed. 1999, 38, 3701.
[7] Another mechanism involving a transient silver enolate is also
possible.
[8] We attempted to generate binap·AgOMe in situ, without success.
[9] a) G. Berti, B. Macchia, F. Macchia, L. Menti, J. Chem. Soc. C
1971, 3371; b) Y. Nakamura, S. Takeuchi, Y. Ohgo, M. Yamaoka,
A. Yoshida, Tetrahedron 1999, 55, 4595.
[10] A. I. Meyers, D. R. Williams, G. W. Erickson, S. White, M.
Druelinger, J. Am. Chem. Soc. 1981, 103, 3081.
[11] The absolute configuration was assigned by analogy.
[12] A. P. G. Kieboom, H. Van Bekkum, Synthesis 1970, 476.
[13] a) P. J. Hattersley, I. M. Lockhart, M. Wright, J. Chem. Soc. C
1969, 217; b) M. Adamczyk, D. S. Watt, D. A. Netzel, J. Org.
Chem. 1984, 49, 4226; c) D. D. Pathak, H. Adams, C. White, J.
Chem. Soc. Chem. Commun. 1994, 733; d) K. Fuji, T. Kawabata,
A. Kuroda, T. Taga, J. Org. Chem. 1995, 60, 1914.
[14] a) M. B. Eleveld, H. Hogeveen, Tetrahedron Lett. 1986, 27, 631;
b) A. Yanagisawa, T. Kikuchi, T. Kuribayashi, H. Yamamoto,
Tetrahedron 1998, 54, 10253.
Table 3: HPLC analysis of the chiral ketone products.[a]
Entry Product
ee
hexane/
tminor tmajor
[min] [min]
[%]
iPrOH
1
(S)-3,4-dihydro-2-methyl-
62
99:1
20:1
12.3 13.3
24.9 18.9
naphthalen-1(2H)-one[2a,10]
2[b] (S)-3,4-dihydro-5-methoxy-
2-methylnaphthalen-1(2H)-
one[11,12]
67
3
(S)-2-ethyl-3,4-dihydro-
64
87
98
99:1
–
13.9 14.9
26.3 27.1
13.9 14.8
14.0 15.0
naphthalen-1(2H)-one[11,13]
4[c] (S)-2,2,6-trimethyl-
cyclohexanone[3,14]
5
(R)-2-phenylcyclo-
9:1
hexanone[2a, 4b,9]
6
99
97
9:1
20:1
7[d] (R)-2-phenylcyclo-
9.1
7.1
heptanone[4b,11,15]
8
9
(R)-2-(4-methoxyphenyl)-
cyclohexanone[4b,9b,16]
(R)-2-p-tolylcyclo-
>99
>99
>99
20:1
20:1
20:1
7.4
9.2
15.4 16.8
24.2 29.5
hexanone[4b,9b,16]
10
(R)-2-(naphthalen-2-yl)-
cyclohexanone[4b,9b,16]
[a] HPLC analysis: Chiralcel OD-H, Daicel Chemical Industries, Ltd., flow
rate=0.5 mLminÀ1 unless stated otherwise. The entry numbers are the
same as in Table 2. [b] Chiralcel OB, flow rate= 0.5 mLminÀ1. [c] GC
analysis on a chiral column (Chiraldex G-TA, Astec, 808C, 50 Pa).
[d] Chiralpak AS, flow rate=1.0 mLminÀ1
.
[15] M. W. Rathke, D. Vogiazoglou, J. Org. Chem. 1987, 52, 3697.
[16] K. Ishihara, M. Kaneeda, H. Yamamoto, J. Am. Chem. Soc. 1994,
116, 11179.
Received: October 16, 2004
Published online: January 11, 2005
Keywords: asymmetric catalysis · ketones · protonation · silver ·
.
silyl enolates
[1] Reviews: a) S. Hꢀnig, in Houben-Weyl: Methods of Organic
Chemistry, Vol. E21 (Eds.: G. Helmchen, R. W. Hoffmann, J.
Mulzer, E. Schaumann), Thieme, Stuttgart, 1995, p. 3851; b) C.
Fehr, Angew. Chem. 1996, 108, 2726; Angew. Chem. Int. Ed.
Engl. 1996, 35, 2566; c) A. Yanagisawa, H. Yamamoto in
Comprehensive Asymmetric Catalysis III (Eds.: E. N. Jacobsen,
A. Pfaltz, H. Yamamoto), Springer, Heidelberg, 1999, p. 1295;
d) J. Eames, N. Weerasooriya, Tetrahedron: Asymmetry 2001, 12,
1; e) P. I. Dalko, L. Moisan, Angew. Chem. 2001, 113, 3840;
Angew. Chem. Int. Ed. 2001, 40, 3726; f) A. Yanagisawa, in
Comprehensive Asymmetric Catalysis, Suppl. 2 (Eds.: E. N.
Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Heidelberg,
2004, p. 125.
[2] For notable recent examples of asymmetric protonation, see:
a) K. Ishihara, D. Nakashima, Y. Hiraiwa, H. Yamamoto, J. Am.
Chem. Soc. 2003, 125, 24; b) Y. Ohtsuka, T. Ikeno, T. Yamada,
Tetrahedron: Asymmetry 2003, 14, 967; c) G. Asensio, A.
Cuenca, N. Rodriguez, M. Medio-Simꢁn, Tetrahedron: Asym-
1548
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2005, 44, 1546 –1548