Organometallics 2007, 26, 455-458
455
Notes
Oxidative Addition of Ligand-Chelated Palladium(0) to Aryl
Halides: Comparison between 1,2-Bisthioethers and
1,2-Bisphosphines
Giuseppe Paladino,† David Madec,‡ Guillaume Prestat,‡ Guillaume Maitro,‡
Giovanni Poli,*,‡ and Anny Jutand*,†
De´partement de Chimie, Ecole Normale Supe´rieure, UMR CNRS-ENS-UPMC 8640, 24 Rue Lhomond,
F-75231 Paris Cedex 5, France, and Laboratoire de Chimie Organique (UMR CNRS 7611), Institut de
Chimie Mole´culaire (FR2769), UniVersite´ Pierre et Marie Curie-Paris 6, Tour 44-45, Boˆıte 183,
4 Place Jussieu, F-75252 Paris Cedex 05, France
ReceiVed September 15, 2006
Scheme 1
Summary: The kinetics of the oxidatiVe addition of bidentate
ligand-chelated Pd0 complexes to phenyl iodide and bromide
has been studied Via cyclic Voltammetry. The dibenzylideneac-
etone (dba) deliVered by the palladium precursor Pd(dba)2 was
found to affect the concentration of the more reactiVe dba-free
Pd0 complex and consequently the kinetics of the oVerall
oxidatiVe addition. The complexes generated from Pd(dba)2 and
PhSCH2CH2SPh (pte) were found to be considerably more
reactiVe than those generated from Pd(dba)2 and Ph2PCH2CH2-
PPh2 (dppe). The former complexes can react with PhBr at low
temperatures.
Earlier works unambiguously established that interaction of
Pd0(dba)2 with 1 equiv of a bidentate P,P ligand such as diop,
binap, or dppf generates the two complexes Pd0(dba)(P,P) and
Pd0(P,P) (Scheme 1). Although both the complexes are reactive
toward PhI, the former and more abundant dba-ligated complex7
is intrinsically less reactive than the minor dba-free one (Scheme
1).8
Introduction
The field of catalysis is witnessing an ever-growing attention,
and several highly efficient methods are currently known in the
literature.1 Despite these achievements, knowledge in this field
is still partial and much effort will be needed to make this
methodology comprehensive and well-established. In this
context, the nature of the subsidiary ligands used for a given
metal-catalyzed process is central, P- and N-based ligands
occupying an unquestionable primary position.
On the other hand, despite the vast knowledge on sulfur-
metal interactions in coordination chemistry,2 the use of S-based
ligands in catalysis is still rather underdeveloped.3 Indeed, the
thioether function, known to be less coordinating than an amine,
an imine, or a phosphine, has been so far mainly exploited as
the hemilabile part of mixed (P,S)4 or (N,S) ligands.5 On the
other hand, ligands based exclusively on thioethers have been
only sporadically reported.6
(4) For (P,S) ligands see: (a) Khiar, N.; Sua´rez, B.; Valdivia, V.;
Ferna´ndez, I. Synlett 2005, 2963-2967. (b) Malacea, R; Manoury, E.;
Routaboul, L.; Daran, J.-C.; Poli, R.; Dunne, J. P.; Withwood, A. C.; Godard,
C.; Duckett, S. B. Eur. J. Inorg. Chem. 2006, 1803-1816. (c) Molander,
G. A.; Burke, J. P.; Carroll, P. J. J. Org. Chem. 2004, 69, 8062-8069. (d)
Die´guez, M.; Pa`mies, O.; Claver, C. J. Organomet. Chem. 2006, 691, 2257-
2262. (e) Guimet, E.; Die´guez, M.; Ruiz, A.; Claver, C. Tetrahedron:
Asymmetry 2005, 16, 959-963. (f) Lam, F. L.; Au-Yeung, T. T. L.; Cheung,
H. Y.; Kok, S. H. L.; Lam, W. S.; Wong, K. Y.; Chan, A. S. C.
Tetrahedron: Asymmetry 2006, 17, 497-499. (g) Evans, D. A.; Campos,
K. R.; Tedrow, J. S.; Michael, F. E.; Gagne´, M. R. J. Org. Chem. 1999,
64, 2994-2995. (h) Evans, D. A.; Campos, K. R.; Tedrow, J. S.; Michael,
F. E.; Gagne´, M. R. J. Am. Chem. Soc. 2000, 122, 7905-7920. (i) Faller,
J. W.; Wilt, J. C.; Parr, J. Org. Lett. 2004, 6, 1301-1304. (j) Faller, J. W.;
Wilt, J. C. Organometallics 2005, 24, 5076-5083. (k) Verdarguer, X.;
Perica`s, M. A.; Riera, A.; Maestro, M. A.; Mah´ıa, J. Organometallics 2003,
22, 1868-1877. (l) Manchen˜o, O. G.; Priego, J.; Cabrera, S.; Arraya´s, R.
G.; Llamas, T.; Carretero, J. C. J. Org. Chem. 2003, 68, 3679-3686. (m)
Cabrera, S.; Arraya´s, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2004,
43, 3944-3949. (n) Cabrera, S.; Arraya´s, R. G.; Alonso, I.; Carretero, J.
C. J. Am. Chem. Soc. 2005, 127, 17938-17947. (o) Zhang, W.; Xu, Q.;
Shi, M. Tetrahedron: Asymmetry 2004, 15, 3161-3169.
(5) For (N,S) ligands see: (a) Chelucci, G.; Baldino, S. Tetrahedron:
Asymmetry 2006, 17, 1529-1536. (b) Ekegren, J. K.; Roth, P.; Ka¨lstro¨m,
K.; Tarnai, T.; Andersson, P. G. Org. Biomol. Chem. 2003, 1, 358-366.
(c) Koning, B.; Meetsma, A.; Kellog, R. M. J. Org. Chem. 1998, 63, 5533-
5540. (d) Voituriez, A.; Fiaud, J.-C.; Schulz, E. Tetrahedron Lett. 2002,
43, 4907-4909. (e) Chelucci, G.; Cabras, M. A. Tetrahedron: Asymmetry
1996, 7, 965-966. (f) Allen, J. V.; Bower, J. F.; Williams, J. M. J.
Tetrahedron: Asymetry 1994, 5, 1895-1898. (g) Bulman Page, P. C.;
Heaney, H.; Reignier, S.; Rassias, G. A. Synlett 2003, 22-28.
* To whom correspondence should be addressed. E-mail:
anny.jutand@ens.fr; giovanni.poli@upmc.fr.
† Ecole Normale Supe´rieure.
‡ Universite´ Pierre et Marie Curie.
(1) Handbook of Organopalladium Chemistry for Organic Synthesis;
Negishi, E.-I., Ed.; John Wiley & Sons: New York, 2002.
(2) (a) Murray, S. G.; Hartley, F. R. Chem. ReV. 1981, 81, 365-414.
(b) Schro¨der, M. In S-Donor Ligands, Encyclopedia of Inorganic Chemicals;
Bruce, K. R., Ed.; J. Wiley & Sons: West Sussex, pp 3577-3594. (c)
Dilworth, J. R.; Wheatley, N. Coord. Chem. ReV. 2000, 199, 89-158.
(3) (a) Bayo´n, J. C.; Claver, C.; Masdeu-Bulto´, A. M. Coord. Chem.
ReV. 1999, 193-195, 73-145. (b) Masdeu-Bulto´, A. M.; Die´guez, M.;
Martin, E.; Go´mez, M. Coord. Chem. ReV. 2003, 242, 159-201. (c) Hiroi,
K. In Handbook of Organopalladium Chemistry for Organic Synthesis;
Negishi, E.-I., Ed.; J. Wiley & Sons: New York, 2002; Chapter II.2.4, pp
67-79.
10.1021/om060846x CCC: $37.00 © 2007 American Chemical Society
Publication on Web 12/13/2006